Mastering Gephi Network Visualization

Total Page:16

File Type:pdf, Size:1020Kb

Mastering Gephi Network Visualization Mastering Gephi Network Visualization Produce advanced network graphs in Gephi and gain valuable insights into your network datasets Ken Cherven BIRMINGHAM - MUMBAI Mastering Gephi Network Visualization Copyright © 2015 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: January 2015 Production reference: 1220115 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78398-734-4 www.packtpub.com Credits Author Project Coordinator Ken Cherven Leena Purkait Reviewers Proofreaders Ladan Doroud Cathy Cumberlidge Miro Marchi Paul Hindle David Edward Polley Samantha Lyon Mollie Taylor George G. Vega Yon Indexer Monica Ajmera Mehta Commissioning Editor Ashwin Nair Graphics Abhinash Sahu Acquisition Editor Sam Wood Production Coordinator Conidon Miranda Content Development Editor Amey Varangaonkar Cover Work Conidon Miranda Technical Editors Shruti Rawool Shali Sasidharan Copy Editors Rashmi Sawant Stuti Srivastava Neha Vyas About the Author Ken Cherven is a Detroit-based data visualization and open source enthusiast, with 20 years of experience working with data and visualization tools. In addition to Gephi, he has worked with a variety of open source tools, including MySQL, SpagoBI, JasperServer, D3, Protovis, Omeka, QGIS, Leaflet, and Exhibit. He also has considerable experience using corporate software tools from Microsoft, Cognos, Tableau, and Oracle. An automotive analyst and visualizer by day, he spends much of his personal time turning baseball data into web-based visualizations housed on his website, http:// visual-baseball.com. He has previously authored Network Graph Analysis and Visualization with Gephi, Packt Publishing, as well as a self-published book, MLB Pennant Races, 1901-1968: A Visual Analysis of Baseball's Pennant Races, Visual-Baseball Press. His current areas of interest include visual dashboards, interactive networks, and anything involving geographic information. Acknowledgments I would like to thank the members of my family for their patience and understanding over the course of several months spent working on this book. This always starts with my wife, Karen, and extends to my children, Kellen, Kristopher, and Katie, as well as my always helpful mother-in-law, Carole Young. This book would not have been possible without the considerable efforts of a group of thorough technical and content editors. I would like to sincerely thank Mollie Taylor, Ladan Doroud, Miro Marchi, Ted Polley, George Vega Yon, Marta Castellani, and Manasi Pandire for their considerable efforts to make this the best possible book. All of your input has been noted, and many improvements have been incorporated. A special thanks also to Amey Varangaonkar at Packt Publishing for managing the entire process while also making recommendations that will result in a more enjoyable reading experience. Thanks also to others who helped in the early stages by providing useful feedback to get the book started. This list includes Joanne Fitzpatrick and Richard Gall at Packt Publishing, plus Gephi community members, Randy Novak, Mike Hughes, Matthieu Totet, Marco Valli, Gerry Wilson, and Carlos Benito Amat. Finally, I would like to thank the creators and maintainers of Gephi for providing such a powerful tool that allows users to explore the fascinating world of network science. Thanks also to the growing community of enthusiasts who use Gephi to create some remarkable visualizations. My hope is that this book will make it easier for you to tap into the power of Gephi and, perhaps, even provide a few new approaches to leverage this powerful tool. About the Reviewers Ladan Doroud is a PhD candidate at the University of California, Davis. She received her master's degree in computer science from the same university in 2013. She is currently working on her PhD in computer science in Prof. Eisen's lab as a computational biologist and data scientist. Her research interests mainly lie in the area of large-scale network analysis, clustering and data mining with special focus on community detection, and function prediction of protein sequences in large-scale biological networks. She has an extensive background in learner-centered education, including her collaboration with Udacity, Inc. in 2014 as a course manager on the data science track, as well as her collaboration with the California State Summer School for Mathematics and Science (COSMOS) in 2011. She can be reached at [email protected]. Miro Marchi is a PhD candidate at the University of Verona, Italy. He received his master's degree in cultural anthropology, ethnology, and ethnolinguistics from Ca' Foscari University of Venice in 2010. He has authored Self-Governance Lessons from Bali and Stephen Lansing, Cangiani M. (ed.), Alternative Approaches to Development, Cleup, 2012, where he has reviewed the research of the interdisciplinary team coordinated by the anthropologist, Stephen J. Lansing, on farmers' cooperation network for rice cultivation in Bali. His current research focuses on finding practical ways to foster the emergence of self-organization in social-economic networks. He is applying ethnographic methods coupled with community-based online network visualization, which is built with Drupal and D3 and available at www.retebuonvivere.org/rete, and he is interested in the use of complexity theory for sustainability and the commons. He can be reached at [email protected]. David Edward Polley is a social sciences librarian at Indiana University-Purdue University Indianapolis (IUPUI). Prior to joining IUPUI, he worked as a researcher at the Cyberinfrastructure for Network Science Center in the Indiana University School of Informatics and Computing, Bloomington. He is interested in the various ways people use data, generated in social science research. He is the coauthor of a book on data visualization with Dr. Katy Börner titled, Visual Insights: A Practical Guide to Making Sense of Data. Mollie Taylor is the President of Proximity Viz LLC, located in Atlanta, Georgia, USA, which provides data visualization and mapping services to a wide range of clients. She holds degrees in economics and international affairs from the Georgia Institute of Technology. Her blog on programming for data analysis can be found at http://blog.mollietaylor.com/. George G. Vega Yon is currently a PhD student at the California Institute of Technology. He holds a BA degree in business administration and an MA degree in economics and public policy from Adolfo Ibáñez School of Government (Chile). He is the author of several R and Stata modules, including ABCoptim: Implementation of Artificial Bee Colony (ABC) Optimization, rgexf: an R package to work with GEXF graph files, and Introducing PARALLEL: Stata module for parallel computing. He has shown a deep interest in statistical computing and data visualization; furthermore, he is the founder of the Chilean R-Users Group (useR). He is the cofounder of the entrepreneurship, NodosChile.org Social Network Analysis, one of the first companies in Chile to put the eye on applied SNA analysis. George's scholarly interests are focused on policy analysis, complexity and statistical computing—recognized by the community, as he has served as a reviewer of the Journal of Computational Economics. www.PacktPub.com Support files, eBooks, discount offers, and more For support files and downloads related to your book, please visit www.PacktPub.com. Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub. com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at [email protected] for more details. At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks. TM https://www2.packtpub.com/books/subscription/packtlib Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books. Why subscribe? • Fully searchable across every book published by Packt • Copy and paste, print, and bookmark content • On demand and accessible via a web browser Free access for Packt account holders If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access. Table of Contents Preface 1 Chapter 1: Fundamentals of Complex Networks and Gephi 7 Graph applications 8 Collaboration graphs 8 Who-talks-to-whom
Recommended publications
  • Gephi Tools for Network Analysis and Visualization
    Frontiers of Network Science Fall 2018 Class 8: Introduction to Gephi Tools for network analysis and visualization Boleslaw Szymanski CLASS PLAN Main Topics • Overview of tools for network analysis and visualization • Installing and using Gephi • Gephi hands-on labs Frontiers of Network Science: Introduction to Gephi 2018 2 TOOLS OVERVIEW (LISTED ALPHABETICALLY) Tools for network analysis and visualization • Computing model and interface – Desktop GUI applications – API/code libraries, Web services – Web GUI front-ends (cloud, distributed, HPC) • Extensibility model – Only by the original developers – By other users/developers (add-ins, modules, additional packages, etc.) • Source availability model – Open-source – Closed-source • Business model – Free of charge – Commercial Frontiers of Network Science: Introduction to Gephi 2018 3 TOOLS CINET CyberInfrastructure for NETwork science • Accessed via a Web-based portal (http://cinet.vbi.vt.edu/granite/granite.html) • Supported by grants, no charge for end users • Aims to provide researchers, analysts, and educators interested in Network Science with an easy-to-use cyber-environment that is accessible from their desktop and integrates into their daily work • Users can contribute new networks, data, algorithms, hardware, and research results • Primarily for research, teaching, and collaboration • No programming experience is required Frontiers of Network Science: Introduction to Gephi 2018 4 TOOLS Cytoscape Network Data Integration, Analysis, and Visualization • A standalone GUI application
    [Show full text]
  • Performing Knowledge Requirements Analysis for Public Organisations in a Virtual Learning Environment: a Social Network Analysis
    chnology Te & n S o o ti ft a w a m r r e Fontenele et al., J Inform Tech Softw Eng 2014, 4:2 o f E Journal of n n I g f i o n DOI: 10.4172/2165-7866.1000134 l e a e n r r i n u g o J ISSN: 2165-7866 Information Technology & Software Engineering Research Article Open Access Performing Knowledge Requirements Analysis for Public Organisations in a Virtual Learning Environment: A Social Network Analysis Approach Fontenele MP1*, Sampaio RB2, da Silva AIB2, Fernandes JHC2 and Sun L1 1University of Reading, School of Systems Engineering, Whiteknights, Reading, RG6 6AH, United Kingdom 2Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brasil Abstract This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was ex- ecuted in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be ex- tracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for ap- plying knowledge management between organisations and creating communities of practice.
    [Show full text]
  • A Comparative Analysis of Large-Scale Network Visualization Tools
    A Comparative Analysis of Large-scale Network Visualization Tools Md Abdul Motaleb Faysal and Shaikh Arifuzzaman Department of Computer Science, University of New Orleans New Orleans, LA 70148, USA. Email: [email protected], [email protected] Abstract—Network (Graph) is a powerful abstraction for scalability for large network analysis. Such study will help a representing underlying relations and structures in large complex person to decide which tool to use for a specific case based systems. Network visualization provides a convenient way to ex- on his need. plore and study such structures and reveal useful insights. There exist several network visualization tools; however, these vary in One such study in [3] compares a couple of tools based on terms of scalability, analytics feature, and user-friendliness. Due scalability. Comparative studies on other visualization metrics to the huge growth of social, biological, and other scientific data, should be conducted to let end users have freedom in choosing the corresponding network data is also large. Visualizing such the specific tool he needs to use. In this paper, we have chosen large network poses another level of difficulty. In this paper, we five widely used visualization tools for an empirical and identify several popular network visualization tools and provide a comparative analysis based on the features and operations comparative analysis. Our comparisons are based on factors these tools support. We demonstrate empirically how those tools such as supported file formats, scalability in visualization scale to large networks. We also provide several case studies of and analysis, interacting capability with the drawn network, visual analytics on large network data and assess performances end user-friendliness (e.g., users with no programming back- of the tools.
    [Show full text]
  • Week 2 - Handling Real-World Network Datasets
    28/12/2017 Social Networks - - Unit 6 - Week 2 - Handling Real-world Network Datasets X [email protected] ▼ Courses » Social Networks Unit 6 - Week Announcements Course Forum Progress Mentor 2 - Handling Real-world Network Datasets Course outline Week2-assignment1 Course Trailer . FAQ 1) Citation Network is which type of network? 1 point Things to Note Directed Accessing the Portal Undirected Week 1 - Introduction Accepted Answers: Week 2 - Handling Real-world Network Directed Datasets 2) Co-authorship Network is which type of network? 1 point Directed Undirected Lecture 14 - Introduction to Datasets Accepted Answers: Undirected 3) What is the full form of CSV? 1 point Computer Systematic Version Comma Separated Version Comma Separated Values Computer Systematic Values Lecture 15 - Ingredients Network Accepted Answers: Comma Separated Values 4) Which of the following is True with respect to the function read_weighted_edgelist() 1 point This function can be used to read a weighted network dataset, however, the weights should only be in string format. Lecture 16 - This function can be used to read a weighted network dataset, however, the weights should only be numeric. Synonymy Network This function can be used to read a weighted network dataset and the weights can be in any format. The statement is wrong; such a function does not exist. Accepted Answers: This function can be used to read a weighted network dataset, however, the weights should only be numeric. Lecture 17 - Web 5) Choose the one that is False out of the following: 1 point Graph GML stands for Graph Modeling Language. https://onlinecourses.nptel.ac.in/noc17_cs41/unit?unit=42&assessment=47 1/4 28/12/2017 Social Networks - - Unit 6 - Week 2 - Handling Real-world Network Datasets GML stores the data in the form of tags just like XML.
    [Show full text]
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Dionysis Manousakas (special thanks to Petko Georgiev, Tassos Noulas and Salvatore Scellato) Social and Technological Network Data Analytics Computer Laboratory, University of Cambridge February 2017 Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. Ready for your own analysis! 2 1. Introduction to NetworkX 3 Introduction: networks are everywhere… Social Mobile phone networks Vehicular flows networks Web pages/citations Internet routing How can we analyse these networks? Python + NetworkX 4 Introduction: why Python? Python is an interpreted, general-purpose high-level programming language whose design philosophy emphasises code readability + - Clear syntax, indentation Can be slow Multiple programming paradigms Beware when you are Dynamic typing, late binding analysing very large Multiple data types and structures networks Strong on-line community Rich documentation Numerous libraries Expressive features Fast prototyping 5 Introduction: Python’s Holy Trinity Python’s primary NumPy is an extension to Matplotlib is the library for include primary plotting mathematical and multidimensional arrays library in Python. statistical computing. and matrices. Contains toolboxes Supports 2-D and 3-D for: Both SciPy and NumPy plotting. All plots are • Numeric rely on the C library highly customisable optimization LAPACK for very fast and ready for implementation. professional • Signal processing publication. • Statistics, and more…
    [Show full text]
  • Using Computer Games Techniques for Improving Graph Visualization Efficiency
    Poster Abstracts at Eurographics/ IEEE-VGTC Symposium on Visualization (2010) Using Computer Games Techniques for Improving Graph Visualization Efficiency Mathieu Bastian1, Sebastien Heymann1;2 and Mathieu Jacomy3 1INIST-CNRS, France 2IMS CNRS - ENSC Bordeaux, France 3WebAtlas, Telecom ParisTech, France Abstract Creating an efficient, interactive and flexible unified graph visualization system is a difficult problem. We present a hardware accelerated OpenGL graph drawing engine, in conjunction with a flexible preview package. While the interactive OpenGL visualization focuses on performance, the preview focuses on aesthetics and simple network map creation. The system is implemented as Gephi, a modular and extensible open-source Java application built on top of the Netbeans Platform, currently in alpha version 0.7. Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Systems]: User Interfaces—I.3.6 [Computing Methodologies]: Methodology and Techniques—Interaction techniques 1. Introduction For guaranteeing best performance, the 3-D visualization engine leaves apart effects and complex shapes, for instance Large scale graph drawing remains a technological chal- curved edges and focus on basics, i.e. nodes, edges and la- lenge, actively developed by the infovis community. Many bels. As it is specialized in a particular task, the visual- systems have successfully brought interactive graph visu- ization engine is thus less flexible. That’s why a comple- alization [Aub03], [Ada06], [TAS09] but still have visu- mentary drawing library, named Preview is needed to bring alization limitations to render large graphs at some mo- parametrization and flexibility. The following sections de- ments. Various techniques have been used to either optimize scibe the role granted to each visualization module.
    [Show full text]
  • Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis
    Hindawi Advances in Bioinformatics Volume 2017, Article ID 1278932, 8 pages https://doi.org/10.1155/2017/1278932 Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis Georgios A. Pavlopoulos,1 David Paez-Espino,1 Nikos C. Kyrpides,1 and Ioannis Iliopoulos2 1 Department of Energy, Joint Genome Institute, Lawrence Berkeley Labs, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA 2Division of Basic Sciences, University of Crete Medical School, Andrea Kalokerinou Street, Heraklion, Greece Correspondence should be addressed to Georgios A. Pavlopoulos; [email protected] and Ioannis Iliopoulos; [email protected] Received 22 February 2017; Revised 14 May 2017; Accepted 4 June 2017; Published 18 July 2017 Academic Editor: Klaus Jung Copyright © 2017 Georgios A. Pavlopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness, and postvisualization capabilities.
    [Show full text]
  • The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing
    The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu David R. Cheriton School of Computer Science University of Waterloo {s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca ABSTRACT 52, 55], and distributed graph processing systems [17, 21, 27]. In Graph processing is becoming increasingly prevalent across many the academic literature, a large number of publications that study application domains. In spite of this prevalence, there is little re- numerous topics related to graph processing regularly appear across search about how graphs are actually used in practice. We conducted a wide spectrum of research venues. an online survey aimed at understanding: (i) the types of graphs Despite their prevalence, there is little research on how graph data users have; (ii) the graph computations users run; (iii) the types is actually used in practice and the major challenges facing users of graph software users use; and (iv) the major challenges users of graph data, both in industry and research. In April 2017, we face when processing their graphs. We describe the participants’ conducted an online survey across 89 users of 22 different software responses to our questions highlighting common patterns and chal- products, with the goal of answering 4 high-level questions: lenges. We further reviewed user feedback in the mailing lists, bug (i) What types of graph data do users have? reports, and feature requests in the source repositories of a large (ii) What computations do users run on their graphs? suite of software products for processing graphs.
    [Show full text]
  • Graph/Network Visualization
    Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: – Telecommunication systems, – Internet and WWW, – Retailers’ distribution networks – knowledge representation – Trade – Collaborations – literature citations, etc. 1 What is a Graph? Vertices (nodes) Edges (links) Adjacency list 1: 2 2: 1, 3 3: 2 1 2 3 1 1 0 1 0 2 1 0 1 3 0 1 0 2 3 Drawing Adjacency matrix 2 Graph Terminology Graphs can have cycles Graph edges can be directed or undirected The degree of a vertex is the number of edges connected to it – In-degree and out-degree for directed graphs Graph edges can have values (weights) on them (nominal, ordinal or quantitative) 3 Trees are Different Subcase of general graph No cycles Typically directed edges Special designated root vertex 4 Issues in Graph visualization Graph drawing Layout and positioning Scale: large scale graphs are difficult Navigation: changing focus and scale 5 Vertex Issues Shape Color Size Location Label 6 Edge Issues Color Size Label Form – Polyline, straight line, orthogonal, grid, curved, planar, upward/downward, ... 7 Aesthetic Considerations Crossings -- minimize number of edge crossings Total Edge Length -- minimize total length Area -- minimize towards efficiency Maximum Edge Length -- minimize longest edge Uniform Edge Lengths -- minimize variances Total Bends -- minimize orthogonal towards straight-line 8 Graph drawing optimization 3D-Graph Drawing Graph visualization techniques Node-link approach – Layered graph drawing (Sugiyama) – Force-directed layout – Multi-dimensional scaling (MDS) Adjacency Matrix 11 Sugiyama (layered) method Suitable for directed graphs with natural hierarchies: All edges are oriented in a consistent direction and no pairs of edges cross Sugiyama : Building Hierarchy Assign layers according to the longest path of each vertex Dummy vertices are used to avoid path across multiple layers.
    [Show full text]
  • Open Source Libraries and Frameworks for Biological Data Visualisation: a Guide for Developers
    www.proteomics-journal.com Page 1 Proteomics Open source libraries and frameworks for biological data visualisation: A guide for developers Rui Wang1,#, Yasset Perez-Riverol1,#, Henning Hermjakob1, Juan Antonio Vizcaíno1,* 1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. #Both authors contributed equally to this manuscript. * Corresponding author: Dr. Juan Antonio Vizcaíno, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. Tel.: +44 1223 492 610; Fax: +44 1223 494 484; E-mail: [email protected]. Running title: Data visualisation libraries and frameworks Keywords: bioinformatics, chart, data visualization, framework, hierarchy, network, software library. Abbreviations Received: 07-Aug-2014; Revised: 21-Oct-2014; Accepted: 26-Nov-2014 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/pmic.201400377. This article is protected by copyright. All rights reserved. API Application Programming Interface AWT Abstract Window Toolkit CATH Class, Architecture, Topology, Homology (classification) EBI European Bioinformatics Institute ENA European Nucleotide Archive CSS, CSS3 Cascading Style Sheets DOT Graph Description Language
    [Show full text]
  • Network Analysis of Tweets
    Network Analysis of Tweets Building and graphing networks of users and tweets Outline ¤ Introduction to Graphs ¤ Not "charting" ¤ Constructing Network Structure ¤ build_graph.py ¤ Parsing tweets ¤ Using networkx ¤ Presentation of Graph data ¤ Gephi Basic Idea of a Graph ¤ “A” is related to “B” ¤ Three things we want to represent ¤ Item, person, concept, thing: “A” ¤ Item, person, concept, thing: “B” ¤ The “is related to” relation Basic Idea of a Graph ¤ “A” is related to “B” ¤ Three things we want to represent ¤ Item, person, concept, thing: “A” ¤ Item, person, concept, thing: “B” ¤ The “is related to” relation is related to Basic Idea of a Graph ¤ “A” is related to “B” ¤ Three things we want to represent ¤ Item, person, concept, thing: “A” ¤ Item, person, concept, thing: “B” ¤ The “is related to” relation ¤ Relation can be directed, directional is related to Who Retweets Whom? ¤ AidanKellyUSA: RT @BreeSchaaf: Quick turn on @NBCSports Men's Singles Luge final! @mazdzer @AidanKellyUSA @TuckerWest1 are laying it all on the line tonig… ¤ Setrice93: RT @NBCOlympics: #Gold for @sagekotsenburg! First gold at #Sochi2014 and first-ever Olympic gold in snowboard slopestyle! http://t.co/ 0F8ys… ¤ adore_knob: RT @drdloveswater: I have waited 4 years to do this. Thank you @NBCOlympics & all your interns for such awesome coverage. #Sochi2014 http:/… ¤ MattJanik: RT @NBCOlympics Yeah, it's not good for your health. ¤ LisaKSimone: RT @robringham: Tired of @nbc / @NBCOlympics holding the Olympics hostage. Time for them to lose exclusivity. #NBCFail ¤ TS_Krupa: RT @NBCOlympics: RT @RedSox: Go Team USA!! @USOlympic #Sochi2014 http://t.co/anvneh5Mmy Who Retweets Whom? ¤ AidanKellyUSA: RT @BreeSchaaf: Quick turn on @NBCSports Men's Singles Luge final! @mazdzer @AidanKellyUSA @TuckerWest1 are laying it all on the line tonig… ¤ Setrice93: RT @NBCOlympics: #Gold for @sagekotsenburg! First gold at #Sochi2014 and first-ever Olympic gold in snowboard slopestyle! http://t.co/ 0F8ys… ¤ adore_knob: RT @drdloveswater: I have waited 4 years to do this.
    [Show full text]
  • Overview of Social Networks Research Software
    53 UDC 519.174.1 Overview of social networks research software Migran N. Gevorkyan*, Anna V. Korolkova*, Dmitry S. Kulyabov*† * Department of Applied Probability and Informatics Peoples’ Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation y Laboratory of Information Technologies Joint Institute for Nuclear Research 6 Joliot-Curie, Dubna, Moscow region, 141980, Russia Email: [email protected], [email protected], [email protected] This paper discusses the software tools which are used to study of social networks (graphs). The study of social graphs received a significant boost with the development of the Internet, as there was open access to data on different communities, uniting millions of people. This allowed to conduct research on a large amount of real data, but the researcher is now required knowledge from different areas of computer technology and programming. The study of social graphs is a complex task. The researcher is required to obtain data, process them, visualize (build a graph) and calculate the metrics of interest to him. In this paper, we looked at the tools that allow you to implement each stage of the study: the NetworkX library, gephi and Graphviz utilities, and the language for graph representation .dot. In the report, we gave a concrete example of the application of all these software tools to the task of obtaining data about the authors and their co-authors from the Scopus abstract database using the open API provided by these services. Key words and phrases: computer science, social networks, graphs, Python. Copyright © 2019 for the individual papers by the papers’ authors.
    [Show full text]