Graph/Network Visualization

Total Page:16

File Type:pdf, Size:1020Kb

Graph/Network Visualization Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: – Telecommunication systems, – Internet and WWW, – Retailers’ distribution networks – knowledge representation – Trade – Collaborations – literature citations, etc. 1 What is a Graph? Vertices (nodes) Edges (links) Adjacency list 1: 2 2: 1, 3 3: 2 1 2 3 1 1 0 1 0 2 1 0 1 3 0 1 0 2 3 Drawing Adjacency matrix 2 Graph Terminology Graphs can have cycles Graph edges can be directed or undirected The degree of a vertex is the number of edges connected to it – In-degree and out-degree for directed graphs Graph edges can have values (weights) on them (nominal, ordinal or quantitative) 3 Trees are Different Subcase of general graph No cycles Typically directed edges Special designated root vertex 4 Issues in Graph visualization Graph drawing Layout and positioning Scale: large scale graphs are difficult Navigation: changing focus and scale 5 Vertex Issues Shape Color Size Location Label 6 Edge Issues Color Size Label Form – Polyline, straight line, orthogonal, grid, curved, planar, upward/downward, ... 7 Aesthetic Considerations Crossings -- minimize number of edge crossings Total Edge Length -- minimize total length Area -- minimize towards efficiency Maximum Edge Length -- minimize longest edge Uniform Edge Lengths -- minimize variances Total Bends -- minimize orthogonal towards straight-line 8 Graph drawing optimization 3D-Graph Drawing Graph visualization techniques Node-link approach – Layered graph drawing (Sugiyama) – Force-directed layout – Multi-dimensional scaling (MDS) Adjacency Matrix 11 Sugiyama (layered) method Suitable for directed graphs with natural hierarchies: All edges are oriented in a consistent direction and no pairs of edges cross Sugiyama : Building Hierarchy Assign layers according to the longest path of each vertex Dummy vertices are used to avoid path across multiple layers. Vertex permutation within a layer to reduce edge crossing. Exact optimization is NP-hard – need heuristics. Sugiyama : Building Hierarchy Force directed graph layout No natural hierarchy or order Based on principles of physics The Spring Model Using springs to represent node-node relations. Minimizing energy function to reach energy equilibrium. Initial layout is important Local minimal problem Spring Layout 17 Energy Function 18 Network of character co-occurrence in Les Misérables Multi-dimensional Scaling Dimension reduction to 2D Graph distance of two nodes are as close to 2D Euclidean distance as possible MDS is a global approach Distance between two nodes: shortest path (classical scaling). Weighted distances ( , = , ) − = w( ,)( , , ) 2 � − < MDS for graph layout Other Node-Link Methods Orthogonal layout – Suitable for UML graph Radial graph – Often used in social networks Nested graph layout – Apply graph layout hierarchically – Suitable for graphs with hierarchy Arc Diagrams Arc Diagram Les Misérables character relations Arc Diagram EU Financial Crisis: http://www.bbc.co.uk/news/business-15748696 Summary: Node-Link Pros – Intuitive – Good for global structure – Flexible, with variations Cons – Complexity >O(N2) – Not suitable for large graphs Adjacency Matrix matrix, for a graph with N nodes. (i, j) position represent the relationship of the ith node and jth node. – Adjacency Matrix Edge weight Directional edges Sorting: node order Path searching and path tracking ? 30 Node Order Path Tracking Adjacency matrix summary Avoid edge crossing, suitable for dense graphs Visually more scalable Visualization is not intuitive Hard to track a path MatLink Hybrid Layout Using adjacency matrix to represent small communities Node-link for relationships between communities NodeTrix GMap Visualizing graphs and clusters as geographic maps to represent node relations (geographic neighbors) Topological graph simplification Reducing amount of data – Reducing nodes: clustering – Reducing edges: minimal spanning tree – Edge bundling Problems: – Loss of data Clustering Edge Bundling Force Directed Edge Bundling Edges are modeled as flexible springs that are able to attract each other. Geometry Based Edge Bundling Edges clusters are found based on a geometric control mesh. Multilevel Agglomerative Edge Bundling Bottom-up merging approach, similar to hierarchical clustering Minimize amount of ink used to render a graph. Skeleton-based Edge Bundling Skeletons: medial axes of edges which are similar in terms of positions information. Iteratively attracting edges towards the skeletons. Comparison Interaction Viewing – Pan, Zoom, Rotate Interacting with graph nodes and edges – Pick, highlight, delete, move Structural interaction – Local re-order and re-layout – Focus+Context – Roll-up & Drill-down Fisheye Focus+Context; Overviews + details-on-demand Distortion to magnify areas of interest: zoom factors of 3-5 Multi-scale spaces: Zoom in/out & Pan left/right Interaction with Social Networks Need to consider the social factors and behaviors related to nodes and edges 50 Graph Visualization Tools Prefuse (Java) Pajek UCINET / NetDraw Sentinel Visualizer JUNG (Java Universal Network/Graph framework) Graphviz Gephi TouchGraph D3 http://prefuse.org/ Pajek http://prefuse.org/ Sentinel Visualizer UCINET / NetDraw Link Analysis, Data Analysis and visualization Visualization, Geospatial of networks and graphs Mapping, and Social Network Analysis (SNA) Example: trade 55 Example: email traffic 56 Example: Subway map 57 Web page connections 58 Communication Networks Hypergraphs Definition A hypergraph is a generalization of a graph, where an edge can connect any number of vertices. A hypergraph H is a pair H = (V,E) where V is a set of nodes/vertices, and E is a set of non-empty subsets of V called hyperedges/links. The Hypergraph H = (V,E) where V = (1,2,3,4,5) and E = {(1,2) (2,3,5) (1,3), (5,4) (2,3)} Applications . Data Mining . Biological Interactions . Social Networks . Circuit Diagrams Graph Representations Edge Nodes: Representative Graph.
Recommended publications
  • Practical Parallel Hypergraph Algorithms
    Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v While there has been signicant work on parallel graph pro- 0 cessing, there has been very surprisingly little work on high- e0 performance hypergraph processing. This paper presents v0 v1 v1 a collection of ecient parallel algorithms for hypergraph processing, including algorithms for betweenness central- e1 ity, maximal independent set, k-core decomposition, hyper- v2 trees, hyperpaths, connected components, PageRank, and v2 v3 e single-source shortest paths. For these problems, we either 2 provide new parallel algorithms or more ecient implemen- v3 tations than prior work. Furthermore, our algorithms are theoretically-ecient in terms of work and depth. To imple- (a) Hypergraph (b) Bipartite representation ment our algorithms, we extend the Ligra graph processing Figure 1. An example hypergraph representing the groups framework to support hypergraphs, and our implementa- , , , , , , and , , and its bipartite repre- { 0 1 2} { 1 2 3} { 0 3} tions benet from graph optimizations including switching sentation. between sparse and dense traversals based on the frontier size, edge-aware parallelization, using buckets to prioritize processing of vertices, and compression. Our experiments represented as hyperedges, can contain an arbitrary number on a 72-core machine and show that our algorithms obtain of vertices. Hyperedges correspond to group relationships excellent parallel speedups, and are signicantly faster than among vertices (e.g., a community in a social network). An algorithms in existing hypergraph processing frameworks. example of a hypergraph is shown in Figure 1a. CCS Concepts • Computing methodologies → Paral- Hypergraphs have been shown to enable richer analy- lel algorithms; Shared memory algorithms.
    [Show full text]
  • Networkx Tutorial
    5.03.2020 tutorial NetworkX tutorial Source: https://github.com/networkx/notebooks (https://github.com/networkx/notebooks) Minor corrections: JS, 27.02.2019 Creating a graph Create an empty graph with no nodes and no edges. In [1]: import networkx as nx In [2]: G = nx.Graph() By definition, a Graph is a collection of nodes (vertices) along with identified pairs of nodes (called edges, links, etc). In NetworkX, nodes can be any hashable object e.g. a text string, an image, an XML object, another Graph, a customized node object, etc. (Note: Python's None object should not be used as a node as it determines whether optional function arguments have been assigned in many functions.) Nodes The graph G can be grown in several ways. NetworkX includes many graph generator functions and facilities to read and write graphs in many formats. To get started though we'll look at simple manipulations. You can add one node at a time, In [3]: G.add_node(1) add a list of nodes, In [4]: G.add_nodes_from([2, 3]) or add any nbunch of nodes. An nbunch is any iterable container of nodes that is not itself a node in the graph. (e.g. a list, set, graph, file, etc..) In [5]: H = nx.path_graph(10) file:///home/szwabin/Dropbox/Praca/Zajecia/Diffusion/Lectures/1_intro/networkx_tutorial/tutorial.html 1/18 5.03.2020 tutorial In [6]: G.add_nodes_from(H) Note that G now contains the nodes of H as nodes of G. In contrast, you could use the graph H as a node in G.
    [Show full text]
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users
    [Show full text]
  • Graphprism: Compact Visualization of Network Structure
    GraphPrism: Compact Visualization of Network Structure Sanjay Kairam, Diana MacLean, Manolis Savva, Jeffrey Heer Stanford University Computer Science Department {skairam, malcdi, msavva, jheer}@cs.stanford.edu GraphPrism Connectivity ABSTRACT nodeRadius 7.9 strokeWidth 1.12 charge -242 Visual methods for supporting the characterization, com- gravity 0.65 linkDistance 20 parison, and classification of large networks remain an open Transitivity updateGraph Close Controls challenge. Ideally, such techniques should surface useful 0 node(s) selected. structural features { such as effective diameter, small-world properties, and structural holes { not always apparent from Density either summary statistics or typical network visualizations. In this paper, we present GraphPrism, a technique for visu- Conductance ally summarizing arbitrarily large graphs through combina- tions of `facets', each corresponding to a single node- or edge- specific metric (e.g., transitivity). We describe a generalized Jaccard approach for constructing facets by calculating distributions of graph metrics over increasingly large local neighborhoods and representing these as a stacked multi-scale histogram. MeetMin Evaluation with paper prototypes shows that, with minimal training, static GraphPrism diagrams can aid network anal- ysis experts in performing basic analysis tasks with network Created by Sanjay Kairam. Visualization using D3. data. Finally, we contribute the design of an interactive sys- Figure 1: GraphPrism and node-link diagrams for tem using linked selection between GraphPrism overviews the largest component of a co-authorship graph. and node-link detail views. Using a case study of data from a co-authorship network, we illustrate how GraphPrism fa- compactly summarizing networks of arbitrary size. Graph- cilitates interactive exploration of network data.
    [Show full text]
  • Gephi Tools for Network Analysis and Visualization
    Frontiers of Network Science Fall 2018 Class 8: Introduction to Gephi Tools for network analysis and visualization Boleslaw Szymanski CLASS PLAN Main Topics • Overview of tools for network analysis and visualization • Installing and using Gephi • Gephi hands-on labs Frontiers of Network Science: Introduction to Gephi 2018 2 TOOLS OVERVIEW (LISTED ALPHABETICALLY) Tools for network analysis and visualization • Computing model and interface – Desktop GUI applications – API/code libraries, Web services – Web GUI front-ends (cloud, distributed, HPC) • Extensibility model – Only by the original developers – By other users/developers (add-ins, modules, additional packages, etc.) • Source availability model – Open-source – Closed-source • Business model – Free of charge – Commercial Frontiers of Network Science: Introduction to Gephi 2018 3 TOOLS CINET CyberInfrastructure for NETwork science • Accessed via a Web-based portal (http://cinet.vbi.vt.edu/granite/granite.html) • Supported by grants, no charge for end users • Aims to provide researchers, analysts, and educators interested in Network Science with an easy-to-use cyber-environment that is accessible from their desktop and integrates into their daily work • Users can contribute new networks, data, algorithms, hardware, and research results • Primarily for research, teaching, and collaboration • No programming experience is required Frontiers of Network Science: Introduction to Gephi 2018 4 TOOLS Cytoscape Network Data Integration, Analysis, and Visualization • A standalone GUI application
    [Show full text]
  • Graph Simplification and Interaction
    Graph Clarity, Simplification, & Interaction http://i.imgur.com/cW19IBR.jpg https://www.reddit.com/r/CableManagement/ Today • Today’s Reading: Lombardi Graphs – Bezier Curves • Today’s Reading: Clustering/Hierarchical edge Bundling – Definition of Betweenness Centrality • Emergency Management Graph Visualization – Sean Kim’s masters project • Reading for Tuesday & Homework 3 • Graph Interaction Brainstorming Exercise "Lombardi drawings of graphs", Duncan, Eppstein, Goodrich, Kobourov, Nollenberg, Graph Drawing 2010 • Circular arcs • Perfect angular resolution (edges for equal angles at vertices) • Arcs only intersect 2 vertices (at endpoints) • (not required to be crossing free) • Vertices may be constrained to lie on circle or concentric circles • People are more patient with aesthetically pleasing graphs (will spend longer studying to learn/draw conclusions) • What about relaxing the circular arc requirement and allowing Bezier arcs? • How does it scale to larger data? • Long curved arcs can be much harder to follow • Circular layout of nodes is often very good! • Would like more pseudocode Cubic Bézier Curve • 4 control points • Curve passes through first & last control point • Curve is tangent at P0 to (P1-P0) and at P3 to (P3-P2) http://www.e-cartouche.ch/content_reg/carto http://www.webreference.com/dla uche/graphics/en/html/Curves_learningObject b/9902/bezier.html 2.html “Force-directed Lombardi-style graph drawing”, Chernobelskiy et al., Graph Drawing 2011. • Relaxation of the Lombardi Graph requirements • “straight-line segments
    [Show full text]
  • Practical Parallel Hypergraph Algorithms
    Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v0 While there has been significant work on parallel graph pro- e0 cessing, there has been very surprisingly little work on high- v0 v1 v1 performance hypergraph processing. This paper presents a e collection of efficient parallel algorithms for hypergraph pro- 1 v2 cessing, including algorithms for computing hypertrees, hy- v v 2 3 e perpaths, betweenness centrality, maximal independent sets, 2 v k-core decomposition, connected components, PageRank, 3 and single-source shortest paths. For these problems, we ei- (a) Hypergraph (b) Bipartite representation ther provide new parallel algorithms or more efficient imple- mentations than prior work. Furthermore, our algorithms are Figure 1. An example hypergraph representing the groups theoretically-efficient in terms of work and depth. To imple- fv0;v1;v2g, fv1;v2;v3g, and fv0;v3g, and its bipartite repre- ment our algorithms, we extend the Ligra graph processing sentation. framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between improved compared to using a graph representation. Unfor- sparse and dense traversals based on the frontier size, edge- tunately, there is been little research on parallel hypergraph aware parallelization, using buckets to prioritize processing processing. of vertices, and compression. Our experiments on a 72-core The main contribution of this paper is a suite of efficient machine and show that our algorithms obtain excellent paral- parallel hypergraph algorithms, including algorithms for hy- lel speedups, and are significantly faster than algorithms in pertrees, hyperpaths, betweenness centrality, maximal inde- existing hypergraph processing frameworks.
    [Show full text]
  • Constraint Graph Drawing
    Constrained Graph Drawing Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften vorgelegt von Barbara Pampel, geb. Schlieper an der Universit¨at Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Informatik und Informationswissenschaft Tag der mundlichen¨ Prufung:¨ 14. Juli 2011 1. Referent: Prof. Dr. Ulrik Brandes 2. Referent: Prof. Dr. Michael Kaufmann II Teile dieser Arbeit basieren auf Ver¨offentlichungen, die aus der Zusammenar- beit mit anderen Wissenschaftlerinnen und Wissenschaftlern entstanden sind. Zu allen diesen Inhalten wurden wesentliche Beitr¨age geleistet. Kapitel 3 (Bachmaier, Brandes, and Schlieper, 2005; Brandes and Schlieper, 2009) Kapitel 4 (Brandes and Pampel, 2009) Kapitel 6 (Brandes, Cornelsen, Pampel, and Sallaberry, 2010b) Zusammenfassung Netzwerke werden in den unterschiedlichsten Forschungsgebieten zur Repr¨asenta- tion relationaler Daten genutzt. Durch geeignete mathematische Methoden kann man diese Netzwerke als Graphen darstellen. Ein Graph ist ein Gebilde aus Kno- ten und Kanten, welche die Knoten verbinden. Hierbei k¨onnen sowohl die Kan- ten als auch die Knoten weitere Informationen beinhalten. Diese Informationen k¨onnen den einzelnen Elementen zugeordnet sein, sich aber auch aus Anordnung und Verteilung der Elemente ergeben. Mit Algorithmen (strukturierten Reihen von Arbeitsanweisungen) aus dem Gebiet des Graphenzeichnens kann man die unterschiedlichsten Informationen aus verschiedenen Forschungsbereichen visualisieren. Graphische Darstellungen k¨onnen das
    [Show full text]
  • Chapter 18 Spectral Graph Drawing
    Chapter 18 Spectral Graph Drawing 18.1 Graph Drawing and Energy Minimization Let G =(V,E)besomeundirectedgraph.Itisoftende- sirable to draw a graph, usually in the plane but possibly in 3D, and it turns out that the graph Laplacian can be used to design surprisingly good methods. n Say V = m.Theideaistoassignapoint⇢(vi)inR to the vertex| | v V ,foreveryv V ,andtodrawaline i 2 i 2 segment between the points ⇢(vi)and⇢(vj). Thus, a graph drawing is a function ⇢: V Rn. ! 821 822 CHAPTER 18. SPECTRAL GRAPH DRAWING We define the matrix of a graph drawing ⇢ (in Rn) as a m n matrix R whose ith row consists of the row vector ⇥ n ⇢(vi)correspondingtothepointrepresentingvi in R . Typically, we want n<m;infactn should be much smaller than m. Arepresentationisbalanced i↵the sum of the entries of every column is zero, that is, 1>R =0. If a representation is not balanced, it can be made bal- anced by a suitable translation. We may also assume that the columns of R are linearly independent, since any basis of the column space also determines the drawing. Thus, from now on, we may assume that n m. 18.1. GRAPH DRAWING AND ENERGY MINIMIZATION 823 Remark: Agraphdrawing⇢: V Rn is not required to be injective, which may result in! degenerate drawings where distinct vertices are drawn as the same point. For this reason, we prefer not to use the terminology graph embedding,whichisoftenusedintheliterature. This is because in di↵erential geometry, an embedding always refers to an injective map. The term graph immersion would be more appropriate.
    [Show full text]
  • Performing Knowledge Requirements Analysis for Public Organisations in a Virtual Learning Environment: a Social Network Analysis
    chnology Te & n S o o ti ft a w a m r r e Fontenele et al., J Inform Tech Softw Eng 2014, 4:2 o f E Journal of n n I g f i o n DOI: 10.4172/2165-7866.1000134 l e a e n r r i n u g o J ISSN: 2165-7866 Information Technology & Software Engineering Research Article Open Access Performing Knowledge Requirements Analysis for Public Organisations in a Virtual Learning Environment: A Social Network Analysis Approach Fontenele MP1*, Sampaio RB2, da Silva AIB2, Fernandes JHC2 and Sun L1 1University of Reading, School of Systems Engineering, Whiteknights, Reading, RG6 6AH, United Kingdom 2Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brasil Abstract This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was ex- ecuted in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be ex- tracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for ap- plying knowledge management between organisations and creating communities of practice.
    [Show full text]
  • Adjacency Matrix
    CSE 373 Graphs 3: Implementation reading: Weiss Ch. 9 slides created by Marty Stepp http://www.cs.washington.edu/373/ © University of Washington, all rights reserved. 1 Implementing a graph • If we wanted to program an actual data structure to represent a graph, what information would we need to store? for each vertex? for each edge? 1 2 3 • What kinds of questions would we want to be able to answer quickly: 4 5 6 about a vertex? about edges / neighbors? 7 about paths? about what edges exist in the graph? • We'll explore three common graph implementation strategies: edge list , adjacency list , adjacency matrix 2 Edge list • edge list : An unordered list of all edges in the graph. an array, array list, or linked list • advantages : 1 2 3 easy to loop/iterate over all edges 4 5 6 • disadvantages : hard to quickly tell if an edge 7 exists from vertex A to B hard to quickly find the degree of a vertex (how many edges touch it) 0 1 2 3 4 56 7 8 (1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6)(4, 7) (5, 6) (6, 7) 3 Graph operations • Using an edge list, how would you find: all neighbors of a given vertex? the degree of a given vertex? whether there is an edge from A to B? 1 2 3 whether there are any loops (self-edges)? • What is the Big-Oh of each operation? 4 5 6 7 0 1 2 3 4 56 7 8 (1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6)(4, 7) (5, 6) (6, 7) 4 Adjacency matrix • adjacency matrix : An N × N matrix where: the non-diagonal entry a[i,j] is the number of edges joining vertex i and vertex j (or the weight of the edge joining vertex i and vertex j).
    [Show full text]
  • Introduction to Graphs
    Multidimensional Arrays & Graphs CMSC 420: Lecture 3 Mini-Review • Abstract Data Types: • Implementations: • List • Linked Lists • Stack • Circularly linked lists • Queue • Doubly linked lists • Deque • XOR Doubly linked lists • Dictionary • Ring buffers • Set • Double stacks • Bit vectors Techniques: Sentinels, Zig-zag scan, link inversion, bit twiddling, self- organizing lists, constant-time initialization Constant-Time Initialization • Design problem: - Suppose you have a long array, most values are 0. - Want constant time access and update - Have as much space as you need. • Create a big array: - a = new int[LARGE_N]; - Too slow: for(i=0; i < LARGE_N; i++) a[i] = 0 • Want to somehow implicitly initialize all values to 0 in constant time... Constant-Time Initialization means unchanged 1 2 6 12 13 Data[] = • Access(i): if (0≤ When[i] < count and Where[When[i]] == i) return Where[] = 6 13 12 Count = 3 Count holds # of elements changed Where holds indices of the changed elements. When[] = 1 3 2 When maps from index i to the time step when item i was first changed. Access(i): if 0 ≤ When[i] < Count and Where[When[i]] == i: return Data[i] else: return DEFAULT Multidimensional Arrays • Often it’s more natural to index data items by keys that have several dimensions. E.g.: • (longitude, latitude) • (row, column) of a matrix • (x,y,z) point in 3d space • Aside: why is a plane “2-dimensional”? Row-major vs. Column-major order • 2-dimensional arrays can be mapped to linear memory in two ways: 1 2 3 4 5 1 2 3 4 5 1 1 2 3 4 5 1 1 5 9 13 17 2 6 7 8 9 10 2 2 6 10 14 18 3 11 12 13 14 15 3 3 7 11 15 19 4 16 17 18 19 20 4 4 8 12 16 20 Row-major order Column-major order Addr(i,j) = Base + 5(i-1) + (j-1) Addr(i,j) = Base + (i-1) + 4(j-1) Row-major vs.
    [Show full text]