Optimisation Des Stratégies De Surveillance Pour La Détection Précoce D’Un Tunicier Envahissant Par L'évaluation Des Mécanismes Et Des Patrons De Recrutement

Total Page:16

File Type:pdf, Size:1020Kb

Optimisation Des Stratégies De Surveillance Pour La Détection Précoce D’Un Tunicier Envahissant Par L'évaluation Des Mécanismes Et Des Patrons De Recrutement Optimisation des stratégies de surveillance pour la détection précoce d’un tunicier envahissant par l'évaluation des mécanismes et des patrons de recrutement Thèse Samuel Collin Doctorat interuniversitaire en Océanographie Philosophiae Doctor (Ph.D.) Québec, Canada © Samuel Collin, 2013 Résumé La mondialisation des activités humaines a grandement contribué à la dissémination et l‟introduction anthropique d‟espèces non indigènes (ENI) dans le monde. Le potentiel de dommages est tel qu‟il y a une grande pression sur les gestionnaires environnementaux pour détecter et contrôler les ENI problématiques (espèces envahissantes) avant que des impacts apparaissent. En étudiant les ENI, les écologistes peuvent examiner certains aspects de la survie des espèces, la dispersion et l‟établissement, qui, en plus de répondre à des questions fondamentales en écologie, fournissent des informations essentielles pour optimiser les efforts de gestion. Cependant, les difficultés associées à l‟étude et la détection des populations naissantes ont réduit les études quantitatives sur les processus qui précèdent les envahissements, laissant les gestionnaires de l‟environnement avec peu de directives pour détecter les ENI. Pour soulager ces défauts, cette étude apporte une évaluation quantitative des éléments déterminants du recrutement et de la dispersion du tunicier envahissant notoirement problématique, Ciona intestinalis, à l‟île du Prince-Édouard (IPE), Canada, pendant les phases précoces de l‟envahissement. Les données de recrutement d‟une population de Ciona ont été collectées sur une période de 2 ans (2008 & 2009), ce qui a permis de modéliser la dissémination (étendue et mode) et d‟examiner les schémas de recrutement pendant l‟établissement. Ces données soulignent l‟importance d‟incorporer la dispersion, aussi bien que la variabilité environnementale, dans les stratégies de monitorage de détection précoce et démontrent comment les facteurs déterminants du recrutement changent quand une population envahissante devient grande et plus répandue. De plus, une série d‟expériences de terrain à petites échelles ont été réalisées pour évaluer les schémas de recrutement pendant la fixation. Les rôles respectifs de la lumière et de la gravité sur le comportement des larves de Ciona ont été identifiés et leur incorporation dans le design du matériel de monitorage a été discutée pour augmenter les taux de fixation et, ainsi, la probabilité de détection. Finalement, la résistance biotique envers les ENI a été examinée en recherchant les interactions les larves de Ciona et deux espèces d‟amphipodes Caprellidae, Caprella linearis (indigène) et C. mutica (non-indigène) que l‟on retrouve à l‟IPE. Cette étude montre comment la présence de caprelles diminue le recrutement larvaire de Ciona et illustre les potentielles interactions négatives entre deux ENI (C. mutica et Ciona), un phénomène rarement documenté. Dans une perspective de gestion, ces interactions négatives peuvent fournir de précieuses connaissances sur de possibles agents de contrôle biologique. De plus, cette étude présente un compte détaillé des mécanismes sous-jacents qui influencent les patrons de recrutement d‟un envahisseur problématique et discute de l‟utilité de ces découvertes pour le monitorage et la gestion future des espèces envahissantes. iii iv Abstract The globalisation of human activity has contributed greatly to the artificial dispersal and introduction of non-indigenous species (NIS) around the world. The potential for damage is such that there is great pressure on environmental managers to detect and control problematic NIS (i.e., invasive species) before any impacts occur. By studying NIS, ecologists can examine aspects of species survival, dispersal, and establishment, which, in addition to addressing fundamental questions of ecology, provide vital information for optimizing management effort. However, the difficulties associated with studying and detecting nascent populations has restricted quantitative studies on the processes that precede invasion, leaving environmental mangers with little guidance for detecting NIS. To alleviate this shortcoming, this study provides a quantitative assessment of the determinants of recruitment and dispersal of the notoriously problematic invasive tunicate, Ciona intestinalis (henceforth Ciona), in Prince Edward Island (PEI), Canada, during the early stages of invasion. Recruitment data from a nascent population of Ciona was collected over a two-year period (2008 & 2009), which allowed for dispersal to be modelled (range and peak) and for patterns of recruitment during establishment to be examined. These data highlight the importance of incorporating dispersal, as well as environmental variability, into early-detection monitoring strategies and demonstrate how drivers of recruitment change as the invading population becomes larger and more widespread. Additionally, a series of small-scale manipulative field studies were performed to assess patterns of recruitment during settlement. The respective roles of light and gravity on Ciona larval behaviour were identified and their incorporation into the design of monitoring equipment (to increase settlement rates and, thus, probability of detection) are discussed. Finally, biotic resistance towards NIS was examined by investigating the interactions between Ciona larvae and two species of caprellid amphipod, Caprella linearis (native) and C. mutica (invasive) found in PEI. This study shows how the presence of caprellids reduces Ciona recruitment and illustrates the potential for negative interactions between two NIS (C. mutica and Ciona), a phenomenon rarely documented. From a managerial perspective, these negative interactions can provide valuable insights to potential biocontrol agents. Moreover, this study presents a detailed account of the underlying mechanisms that influence patterns of recruitment of a problematic invader and discusses the utility of these findings for future monitoring and management of invasive species. v vi Tables des matières Résumé ........................................................................................................................................................ iii Abstract ........................................................................................................................................................ v Tables des matières ................................................................................................................................... vii Liste des tableaux ....................................................................................................................................... xi Liste des figures ........................................................................................................................................ xiii Acknowledgements .................................................................................................................................. xvii Avant-propos ............................................................................................................................................ xix Chapitre 1. Introduction générale ............................................................................................................. 1 1.1. Le processus d‟invasion ...................................................................................................................... 4 1.1.1. Le transport ............................................................................................................................... 4 1.1.2. Introduction ............................................................................................................................... 5 1.1.3. L‟établissement ......................................................................................................................... 6 1.1.4. L‟expansion de la population .................................................................................................... 7 1.1.5. Les impacts ............................................................................................................................... 8 1.2. Gestion ................................................................................................................................................ 9 1.3. Le tunicier Ciona intestinalis ........................................................................................................... 11 1.4. Plan et objectifs de la thèse............................................................................................................... 14 Chapitre 2. Optimizing early detection of non-indigenous species: estimating the scale of dispersal of a nascent population of the invasive tunicate Ciona intestinalis (L.) ................................................ 16 2.1. Résumé .............................................................................................................................................. 16 2.2. Abstract.............................................................................................................................................. 17 2.3. Introduction ....................................................................................................................................... 18 2.4. Methods ............................................................................................................................................. 20 2.4.1. Study site ................................................................................................................................
Recommended publications
  • Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
    Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of
    [Show full text]
  • First Record of the Marine Alien Amphipod Caprella Mutica (Schurin, 1935) in South Africa
    BioInvasions Records (2017) Volume 6, Issue 1: 61–66 Open Access DOI: https://doi.org/10.3391/bir.2017.6.1.10 © 2017 The Author(s). Journal compilation © 2017 REABIC Rapid Communication First record of the marine alien amphipod Caprella mutica (Schurin, 1935) in South Africa Koebraa Peters and Tamara B. Robinson* Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa E-mail addresses: [email protected] (KP), [email protected] (TBR) *Corresponding author Received: 22 July 2016 / Accepted: 5 December 2016 / Published online: 15 December 2016 Handling editor: Elisabeth Cook Abstract We report the first discovery of the marine amphipod Caprella mutica (Schurin, 1935), commonly known as the Japanese skeleton shrimp, in South African waters. This amphipod is indigenous to north-east Asia and has invaded several regions, including Europe, North America, New Zealand and now South Africa. C. mutica was detected in scrape samples from the hulls and niche areas of four yachts resident to False Bay Marina, Simon’s Town, on South Africa’s South Coast. A total of 2,157 individuals were recorded, comprising 512 males, 966 females (20% of which were gravid) and 679 juveniles. The yachts upon which this amphipod was found were not alongside each other, suggesting that the species is widely distributed within the marina. The presence of C. mutica in South Africa has been anticipated, as previous work highlighted the climatic suitability of the region and the presence of vectors between South Africa and other invaded areas. The fast reproductive cycle of C. mutica, along with its high reproductive output, have important implications for its invasiveness in South Africa.
    [Show full text]
  • European Expansion of the Introduced Amphipod Caprella Mutica Schurin 1935
    Aquatic Invasions (2007) Volume 2, Issue 4: 411-421 DOI: 10.3391/ai.2007.2.4.11 © 2007 European Research Network on Aquatic Invasive Species Special issue “Alien species in European coastal waters”, Geoff Boxshall, Ferdinando Boero and Sergej Olenin (eds) Research article European expansion of the introduced amphipod Caprella mutica Schurin 1935 Elizabeth J. Cook1*, Marlene Jahnke1, Francis Kerckhof 2, Dan Minchin3, Marco Faasse4, Karin Boos5 and Gail Ashton6 1Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, UK E-mail: [email protected] 2MUMM, Marine Environmental Management Section, Royal Belgian Institute of Natural Sciences, 3e en 23e Linieregimentsplein, B-8400 Oostende, Belgium, E-mail: [email protected] 3Marine Organism Investigations, 3 Marina Village, Ballina, Killaloe, Co. Clare, Ireland E-mail: [email protected] 4National Museum of Natural History, Naturalis, P.O. Box 9517, 2300 RA Leiden, The Netherlands E-mail: [email protected] 5Biologische Anstalt Helgoland, Alfred Wegener Institut for Polar- and Marine Research, P.O. Box 180, 27483 Helgoland, Germany, E-mail: [email protected] 6Smithsonian Environmental Research Centre, 647 Contees Wharf Road, P.O. Box 28, Edgewater MD 21037, USA, E-mail: [email protected] *Corresponding author Received 1 November 2007; accepted in revised form 27 November 2007 Abstract The amphipod Caprella mutica is one of the most rapidly invading species in Europe and has extended its range throughout North Sea and Celtic Sea coasts and the English Channel in less than fourteen years. It was first described from sub-boreal areas of north-east Asia in 1935 and has since spread to both northern and southern hemispheres.
    [Show full text]
  • Assessing Biotic Interactions Between a Non-Indigenous Amphipod and Its Congener in a Future Climate Change Scenario
    Aquatic Invasions (2021) Volume 16, Issue 2: 186–207 CORRECTED PROOF Research Article Assessing biotic interactions between a non-indigenous amphipod and its congener in a future climate change scenario Paola Parretti1,2,3,*, Macarena Ros4, Ignacio Gestoso3,5, Patrício Ramalhosa3,6, Ana Cristina Costa1,2 and João Canning-Clode3,5 1CIBIO, Research Center in Biodiversity and Genetic Resources, InBIO Associate Laboratory and Faculty of Sciences and Technologies, University of the Azores, Portugal. Rua Mãe de Deus 13A, 9501-801 Ponta Delgada, São Miguel, Açores, Portugal 2Faculty of Sciences and Technology, University of the Azores, Rua Mãe de Deus 13A, 9501-801 Ponta Delgada, São Miguel, Açores Portugal 3MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI). Edifício Madeira Tecnopolo, Caminho da Penteada, 9020-105 Funchal, Madeira, Portugal 4Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Spain 5Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA 6OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Edifício Madeira Tecnopolo, Piso 0, Caminho da Penteada, 9020-105 Funchal, Madeira, Portugal Author e-mails: [email protected] (PP), [email protected] (MR), [email protected] (IG), [email protected] (PR), [email protected] (ACC), [email protected] (JCC) *Corresponding author Citation: Parretti P, Ros M, Gestoso I, Ramalhosa P, Costa AC, Canning-Clode J Abstract (2021) Assessing biotic interactions between a non-indigenous amphipod and To evaluate the impact of successful invasions of marine ecosystems by non- its congener in a future climate change indigenous species (NIS) in a future climate change scenario, we analysed how an scenario.
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Caprella mutica Phylum Arthropoda Common Name Japanese skeleton shrimp Class Malacostraca Order Amphipoda Family Caprellidae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\CAPMUT.pn g 17 Final Rank 64.95 Data Deficiency: 8.00 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 28.25 30 0 Anthropogenic Influence: 8 10 0 Biological Characteristics: 18.75 30 0 Impacts: 4.75 22 8.00 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 59.75 92.00 8.00 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) -2 Minimum Salinity (ppt) 11 Maximum Temperature (°C) 28 Maximum Salinity (ppt) 40 Minimum Reproductive Temperature (°C) 4 Minimum Reproductive Salinity (ppt) 31* Maximum Reproductive Temperature (°C) 20 Maximum Reproductive Salinity (ppt) 35* Additional Notes First described from sub-boreal areas of north-east Asia in 1935 and has since spread to both northern and southern hemispheres. C. mutica is frequently associated with man-made structures and is found in abundance on boat hulls, navigation/offshore buoys, floating pontoons and aquaculture infrastructure. Likely dispersed via hull fouling, presence in ballast water and sea chests, or accidental introduction
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): VII. Caprelloidea – a review Donald B. Cadien, LACSD 22July04 (revised 20Apr15) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Anthropogenic transport is also constantly introducing exotic species into our area, particularly in this superfamily. Introduction to the Caprelloidea Until recent years the caprellids were viewed as a separate suborder of the order Amphipoda, equivalent to the gammarids and the hyperiids. The discovery of the caprogammarids (Kudrjashov & Vassilenko 1966) began to call this into question (McCain 1968, 1970; Laubitz 1976, J. L. Barnard & Karaman 1983), and, following the revisionary work of Myers and Lowry (2003), they are fully nested into the gammaroids based on morphologically based cladistic analysis of their phylogeny. This position was retained in the larger analysis of Lowry & Myers (2013) which established the senticaudates, to which all of the caprellidians belong. Not all workers are willing to accept the revisions of Myers and Lowry, particularly Stella Vassilenko, who feels that it is inappropriate and based on the wrong evidence (Vassilenko 2006). She feels that caprellids should retain their own separate suborder as Caprellidea, and that Cyamida and Caprellida both should retain infraordinal rank.
    [Show full text]
  • Zeitschrift Für Wissenschaftliche Zoologie
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at über drei unterirdische Gammariden. Von Dr. August Wrzesniowski, früheren o. ö. Professor der Zoologie an der kaiserlichen Universität zu Warschau. Mit Tafel XXVII—XXXII. Während meines Aufenthaltes in Zakopane (spr. Sakopane) am Nordabhange des Tatra-Gebirges im Jahre 1 882 erhielt ich ein Exem- plar Niphargus, welches aus einem dortigen Kellerbrunnen stammte. Lange Zeit konnte ich mir keine weiteren Exemplare verschaffen, bis ich endlich nach langem vergeblichen Forschen in Folge Anwendung der AsPER'schen Methode ^ mein Ziel erreichte. Ich füllte nämlich auf- gefischten Bodensatz aus einem der dort in Kellern gegrabenen Brunnen in einen lose gewebten Musselinsack, spülte denselben in einem mit Wasser gefüllten Becken durch, seihte dann das getrübte Wasser durch ein dichtes Maschennetz. Alsbald fand ich in meinem Sacke größere, in dem Netze kleinere Exemplare vor. Die in Zakopane üblichen Schöpfbrunnen sind gewöhnlich kaum einen Meter tief, weil auf dem dortigen Felsengrunde nur eine geringe Erdschicht ruht; desshalb war es mir möglich aus besagten Brunnen mit einem gewöhnlichen Exkur- sionsnetze den erforderlichen Bodensatz herauszuheben. Diesen meinen Fund schriftlich zu verwerthen erleichterte mir erheblich die freundliche Beihilfe von Fachgenossen. So beehrte mich Professor Dr. Franz Vejdovsky in Prag gefälligst mit der Zusendung zahlreicher Exemplare des daselbst aufgefundenen Brunnen-Niphargus und mehrerer bezüglicher litterarischer Quellen. Die kollegiale Zuvorkommenheit des Herrn Professor Dr. Henri Blanc in Lausanne und des Herrn Dr. Alexander Strauch, Mitglied der kaiserlichen Akademie der Wissenschaften in St. Petersburg ermög- 1 Asper, Beiträge zur Kenntnis der Tiefseefauna der Schweizer Seen, in : Zool. Anzeiger. 3. Jahrg. 1880. Nr. 51.
    [Show full text]
  • Impacts of Invasive Alien Marine Species on Ecosystem Services and Biodiversity: a Pan-European Review
    Aquatic Invasions (2014) Volume 9, Issue 4: 391–423 doi: http://dx.doi.org/10.3391/ai.2014.9.4.01 Open Access © 2014 The Author(s). Journal compilation © 2014 REABIC Review Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review Stelios Katsanevakis1*, Inger Wallentinus2, Argyro Zenetos3, Erkki Leppäkoski4, Melih Ertan Çinar5, Bayram Oztürk6, Michal Grabowski7, Daniel Golani8 and Ana Cristina Cardoso1 1European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy 2Department of Biological and Environmental Sciences, University of Gothenburg, Sweden 3Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Ag. Kosmas, Greece 4Department of Biosciences, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland 5Ege University, Faculty of Fisheries, Department of Hydrobiology, Bornova, Izmir, Turkey 6Faculty of Fisheries, Marine Biology Laboratory, University of Istanbul, Istanbul, Turkey 7Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Poland 8Department of Ecology, Evolution and Behavior and the National Natural History Collections, The Hebrew University of Jerusalem, Israel E-mail: [email protected] (SK), [email protected] (IW), [email protected] (AZ), [email protected] (EL), [email protected] (MEC), [email protected] (BO), [email protected] (MG), [email protected] (DG), [email protected] (ACC) *Corresponding author Received: 8 January 2014 / Accepted: 6 June 2014 / Published online: 4 August 2014 Handling editor: Vadim Panov Abstract A good understanding of the mechanisms and magnitude of the impact of invasive alien species on ecosystem services and biodiversity is a prerequisite for the efficient prioritisation of actions to prevent new invasions or for developing mitigation measures.
    [Show full text]
  • Marine Ecology Progress Series 569:15
    The following supplement accompanies the article Post-settlement dispersal ability determines structure of marine benthic metacommunities Gustavo M. Martins*, Miguel G. Matias, Isadora Moniz, Carlos Rius, Josephine Sanderson, Ana I. Neto, Stuart R. Jenkins *Corresponding author: [email protected] Marine Ecology Progress Series 569: 15–23 (2017) Fig. S1. Photographs of experimental patches and metacommunities (groups of patches) deployed in an inhospitable soft-bottom subtidal habitat. 1 small metacommunity (sm) sand sm sm sm lm lm patch 20 m sm lm large metacommunity sm sm (lm) lm reef lm lm Fig. S2. Schematic representation of experimental design. Fig. S3. Numbers of species and total abundance in experimental patches after 3, 6 and 18 days of deployment and averaged (± SE) over our main experiment (2 months). 2 Table S1. List of taxa (species or morpho-species) identified present in the experimental turfs. Post- Subclass/ settlement Phylum Class Order Taxa dispersal Annelida Clitellata Oligochaeta Oligochaeta sp1 Motile Oligochaeta sp2 Motile Oligochaeta sp3 Motile Oligochaeta sp4 Motile Oligochaeta sp5 Motile Oligochaeta sp6 Motile Annelida Polychaeta Errantia Errantia sp1 Motile Errantia sp2 Motile Errantia sp3 Motile Errantia sp4 Motile Errantia sp5 Motile Errantia sp6 Motile Errantia sp7 Motile Errantia sp8 Motile Errantia sp9 Motile Errantia sp10 Motile Errantia sp11 Motile Errantia sp12 Motile Errantia sp13 Motile Errantia sp14 Motile Euphrosine foliosa Motile Sedentaria Sedentaria sp1 Sessile Spirorbid sp1 Sessile Spirorbid
    [Show full text]
  • First Record of the Caprellid Amphipod Caprella Andreae Mayer, 1890 (Crustacea, Amphipoda, Caprellidae) from New Zealand
    BioInvasions Records (2014) Volume 3, Issue 2: 97–102 Open Access doi: http://dx.doi.org/10.3391/bir.2014.3.2.07 © 2014 The Author(s). Journal compilation © 2014 REABIC Rapid Communication First record of the caprellid amphipod Caprella andreae Mayer, 1890 (Crustacea, Amphipoda, Caprellidae) from New Zealand Chris Woods1*, Rissa Williams2 and Kevin Heasman3 1National Institute of Water and Atmospheric Research Ltd, Private Bag 8602, Christchurch 8044, New Zealand 2Ministry for Primary Industries, PO Box 40742, Upper Hutt 5018, New Zealand 3Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand E-mail: [email protected] (CW), [email protected] (RW), [email protected] (KH) *Corresponding author Received: 31 December 2013 / Accepted: 28 April 2014 / Published online: 16 May 2014 Handling editor: Michal Grabowski Abstract On 14 October 2012, two representative individuals (one male and one female) of an unidentified caprellid amphipod were collected from a mussel farm near Opotiki, northern New Zealand. These specimens were identified as Caprella andreae Mayer, 1890. This is the first record of this species from New Zealand waters and only the second record from the southern hemisphere. The wider distribution of C. andreae around New Zealand and any potential impacts are currently unknown. Key words: Caprella andreae, caprellid amphipod, non-indigenous species, New Zealand, mussel farm study represents the first record of a second non- Introduction indigenous species, Caprella andreae Mayer, 1890 from New Zealand waters and discusses its Caprellid amphipods are common inhabitants of potential impacts on the coastal ecosystem. many marine epibiotic fouling communities and are distinguished by their elongate, stick-like Methods body form and reduction of the abdominal appendages specialized for clinging to surfaces.
    [Show full text]
  • Distribution of the Invasive Caprella Mutica Schurin, 1935 and Native
    Aquatic Invasions (2016) Volume 11, Issue 4: 437–449 DOI: http://dx.doi.org/10.3391/ai.2016.11.4.08 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Distribution of the invasive Caprella mutica Schurin, 1935 and native Caprella linearis (Linnaeus, 1767) on artificial hard substrates in the North Sea: separation by habitat 1,2, 3 4 4 1 Joop W.P. Coolen *, Wouter Lengkeek , Steven Degraer , Francis Kerckhof , Roger J. Kirkwood and Han J. Lindeboom1,2 1IMARES Wageningen UR – Institute for Marine Resource & Ecosystem Studies, P.O. Box 57, 1780 AB Den Helder, The Netherlands 2Wageningen University, Chair group Aquatic Ecology and Water Quality Management, Droevendaalsesteeg 3a, 6708 PD Wageningen, The Netherlands 3Bureau Waardenburg, P.O. Box 365, 4100 AJ Culemborg, The Netherlands 4Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Aquatic and Terrestrial Ecology, Marine Ecology and Management Section, Gulledelle 100, 1200 Brussels, Belgium *Corresponding author E-mail: [email protected] Received: 25 February 2016 / Accepted: 20 July 2016 / Published online: 25 August 2016 Handling editor: Michal Grabowski Abstract Studying offshore natural and artificial hard substrates in the southern North Sea (51ºN–57ºN/1ºW–9ºE), the invasive introduced Japanese skeleton shrimp Caprella mutica Schurin, 1935 was found to co-exist with the native Caprella linearis (Linnaeus, 1767) only on near-shore locations that had an intertidal zone (e.g., wind farm foundations). In contrast, on far offshore and strictly subtidal locations, such as shipwrecks and rocky reefs, only C. linearis was found. Based on these exploratory observations, we hypothesised that artificial structures that are only subtidal are inhabited exclusively by C.
    [Show full text]
  • C Aprella Mu Tica
    Biological Synopsis of the Japanese Skeleton Shrimp (C aprella mu tica) C hristian T u rcotte and Bernard Sainte-M arie R egional Science Branch F isheries and O ceans C anad a M au rice L amontagne Institu te 8 5 0 , rou te d e la M er M ont-Joli (Q u eb ec) G 5 H 3 Z 4 2 0 0 9 C anad ian M anu script R eport of F isheries and A q u atic Sciences 2 9 0 3 1 Canadian Manuscript Report of Fisheries and Aquatic Sciences Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada.
    [Show full text]