Charles M. Duke, Jr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Student Worksheets, Assessments, and Answer Keys
Apollo Mission Worksheet Team Names _________________________ Your team has been assigned Apollo Mission _______ Color _________________ 1. Go to google.com/moon and find your mission, click on it and then zoom in. 2. Find # 1, this will give you information to answer the questions below. 3. On your moon map, find the location of the mission landing site and locate this spot on your map. Choose a symbol and the correct color for your mission (each mission has a specific symbol and you can use this if you like or make up your own). In the legend area put your symbol and mission number. 4. Who were the astronauts on the mission? The astronauts on the mission were ______________________________________ ______________________________________________________________________ 5. When did the mission take place? The mission took place from _______________________________________________ 6. How many days did the mission last? The mission lasted ______________________________________________________ 7. Where did the mission land? The mission landed at____________________________________________________ 8. Why did the mission land here? They landed at this location because ________________________________________ ___________________________________________________________________________ _______________________________________________________________________ 9. What was the goal of the mission? The goal of the mission was_______________________________________________ ______________________________________________________________________ ___________________________________________________________________________ -
USGS Open-File Report 2005-1190, Table 1
TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16). -
Charles Duke BRUCE BOYER MIKE MAXWELL New Braunfels – Mark Hampton Vickrey & Associates, Inc
2020 TEXAS LEGISLATIVE CONFERENCE ASSOCIATE SPONSORS America’s SBDC Texas McKenna Foundation 2020 Texas Legislative A N N U A L Associated General Contractors Mignon McGarry Conference Co-Sponsors 5 4 t h of Texas (AGC) Moeller & Associates ACCENTURE • BLUE CROSS AND BLUE SHIELD OF TEXAS September 2020 Astoria Strategic Wealth Moody Bank CEMEX • CENTERPOINT ENERGY – Brian Cox, Principal Natural Bridge Caverns GUADALUPE BLANCO RIVER AUTHORITY (GBRA) New Braunfels TEXAS WATER SUPPLY COMPANY • WALMART Austin Firefighters Association New Braunfels Herald-Zeitung Civic Convention Austin-San Antonio Corridor Council New Braunfels Independent Reception–Luncheon Sponsors School District Center Bascon Crahan PLLC ALAMO AREA COUNCIL OF GOVERNMENTS • CPS ENERGY New Braunfels Smokehouse GUADALUPE VALLEY ELECTRIC COOPERATIVE (GVEC) Bluebonnet Motors New Braunfels Utilities MARTIN MARIETTA • TASKUS Borgelt Law Outdoor Advertising Association Facility Sponsors Broaddus & Associates of Texas (OAAT) GREATER TEXAS CREDIT UNION • M&S ENGINEERING Broadway Bank Pedernales Electric Cooperative, Inc. TEXAS ASSOCIATION OF REALTORS • TEXAS STATE UNIVERSITY Buda Economic Phillips 66 Breakfast Sponsors Development Corporation Raba Kistner Consultants, Inc. FOUR RIVERS ASSOCIATION OF REALTORS • HUNTER INDUSTRIES, LTD. Capital West Securities Reagan Burrus, PLLC RANDOLPH-BROOKS FEDERAL CREDIT UNION Resolute Health Hospital CASA of Central Texas, Inc. SAN ANTONIO MOBILITY COALITION (SAMCo) Rocking MJ Ranch TEXAS ECONOMIC DEVELOPMENT COUNCIL Casteel & Casteel, PLLC -
Bitbots + Space Moon Village in 4 Steps
BitBots + Space Moon village in 4 steps Grades k-3 + Space News Grown ups are designing a space village on the moon. They are designing and making models for the houses, transportation and everything else we need in space. They need our help to understand what we need when travelling to space. How would your house look like? Your spaceship? Your garden? Your communication device? Space Villages in process.. Class 1 Transportation on the Moon Rolling Wheels? Will cars have wheels? Will they hover? Flying Objects? Will there be airplanes or spaceships? Or something completely new? A train that flies? Building Timeline: During class: - Build for 30 min during class and make a quick sketch of some vehicles for the moon village In your own time: - Take them apart and make them better (if you think they need improvement) - Make different models of space vehicles - Design the roads or other ways you think these vehicles should move. Reading Material: We would like the kids to focus over the week on research as well as building models: Honet History: The Race to Space When the Moon Forgot (by Jimmy Liao ) Class 2 Housing on the Moon How will your house on the moon look like? Do houses on the moon have windows? Will there be garages for your vehicles? Will there be elevators? How do the doors look like? Things to consider when building: Air on the moon. On the moon, there's no air to breathe, no breezes to make the flags planted there by the Apollo astronauts flutter. However, there is a very, very thin layer of gases on the lunar surface that can almost be called an atmosphere. -
Charles Duke Jnr
Brigadier-General USAF (Ret) Charles Duke Jnr One of the First Astronauts on the Moon "As capcom for the Apollo 11 mission, his southern drawl became familiar to millions" Brigadier-General Charles M. Duke Jnr. was the 10th man to walk on the Moon, taking his own steps on the Moon serving as lunar module pilot of Apollo 16 in 1972. He is currently owner of Duke Investments and President of Charlie Duke Enterprises and in great demand worldwide as a movaonal speaker. TOPICS: IN DETAIL: Apollo 16 Charles M. Duke Jnr. flew for the US Air Force before being selected by Nasa in Moon Landings 1966. He was graduated valedictorian from the Admiral Farragut Academy in St. Motivation Petersburg, Florida; received a Bachelor of Science degree in Naval Sciences from New Technology the U.S. Naval Academy and a Master of Science degree in Aeronaucs from the Space Exploration Massachuses Instute of Technology. He received numerous awards and honors Vision for the Future including the NASA Disnguished Service medal, the JSC Cerficate of Commendaons (1970). LANGUAGES: He presents in English. WHAT HE OFFERS YOU: Sharing his fascinang story about how he felt being the capsule communicator PUBLICATIONS: on Apollo 11, and about his experiences on Apollo 16, Charles M. Duke Jnr. encourages and inspires his audience to reach their goals and beyond. 1990 Moonwalker (co-author) HOW HE PRESENTS: Gied with the combined abilies of storytelling and challenging others, Charles M. Duke's speeches are entertaining, informave and sprinkled with humour. © 2019 Celebrity Speakers Ltd To book call: +44 (0)1628 601 400 Email: [email protected] Visit: www.speakers.co.uk. -
The Overview Effect and the Ultraview Effect: How Extreme Experiences In/Of Outer Space Influence Religious Beliefs in Astronaut
religions Article The Overview Effect and the Ultraview Effect: How Extreme Experiences in/of Outer Space Influence Religious Beliefs in Astronauts Deana L. Weibel Anthropology Department, Grand Valley State University, Allendale, MI 49401, USA; [email protected] Received: 30 June 2020; Accepted: 11 August 2020; Published: 13 August 2020 Abstract: This paper, based mainly on astronauts’ first-person writings, historical documents, and my own ethnographic interviews with nine astronauts conducted between 2004 and 2020, explores how encountering the earth and other celestial objects in ways never before experienced by human beings has influenced some astronauts’ cosmological understandings. Following the work of Timothy Morton, the earth and other heavenly bodies can be understood as “hyperobjects”, entities that are distributed across time and space in ways that make them difficult for human beings to accurately understand, but whose existence is becoming increasingly detectable to us. Astronauts in outer space are able to perceive celestial objects from vantages literally unavailable on earth, which has often (but not always) had a profound influence on their understandings of humanity, life, and the universe itself. Frank Wright’s term, the “overview effect”, describes a cognitive shift resulting from seeing the Earth from space that increases some astronauts’ sense of connection to humanity, God, or other powerful forces. Following NASA convention (NASA Style Guide, 2012), I will capitalize both Earth and Moon, but will leave all quotations in their original style. The “ultraview effect” is a term I introduce here to describe the parallel experience of viewing the Milky Way galaxy from the Moon’s orbit (a view described reverently by one respondent as a “something I was not ready for”) that can result in strong convictions about the prevalence of life in the universe or even unorthodox beliefs about the origins of humanity. -
PDF Document Download
“We choose to go to the moon ...” President John F. Kennedy’s commitment to landing an astronaut “on the Moon and returning him back safely to the Earth” was particularly audacious considering when he fi rst voiced the challenge, only one American had been in space for a grand total of 15 minutes and 28 seconds. Here is a look back at some of the milestones NASA and its astronauts reached on their way to the Moon. Learn more by visiting the John F. Kennedy Presidential 2 Library & Museum at www.jfklibrary.org 3 Only in the Sixties The Sixties could be described in words Charles To put President Kennedy’s proclamation in pers- Sadly, Gordon Cooper’s Faith 7 mission was the last Dickens had written just over a century before the pective, it is useful to remember that he made the of NASA’s manned space fl ights to take place in decade began: “It was the best of times, it was the speech only 16 months after America’s fi rst manned President Kennedy’s lifetime. worst of times ... “ space flight and seven months after John Glenn became the fi rst American to orbit the Earth. NASA’s While John F. Kennedy would not live to see his It was a time of stark contrasts. On one hand, it was four manned fl ights had each lasted less than fi ve dream realized, his challenge stimulated the imagi- an era of enormous political and social unrest. On the hours. In fact, NASA had only been established four nations of people from every nation and motivated other, it offered unparalleled scientifi c advancement years earlier. -
ILWS Report 137 Moon
Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Albury February 2020 © 2011, revised 2020. All rights reserved by the authors. The contents of this publication are copyright in all countries subscribing to the Berne Convention. No parts of this report may be reproduced in any form or by any means, electronic or mechanical, in existence or to be invented, including photocopying, recording or by any information storage and retrieval system, without the written permission of the authors, except where permitted by law. Preferred citation of this Report Spennemann, Dirk HR & Murphy, Guy (2020). Returning to the Moon. Heritage issues raised by the Google Lunar X Prize. Institute for Land, Water and Society Report nº 137. Albury, NSW: Institute for Land, Water and Society, Charles Sturt University. iv, 35 pp ISBN 978-1-86-467370-8 Disclaimer The views expressed in this report are solely the authors’ and do not necessarily reflect the views of Charles Sturt University. Contact Associate Professor Dirk HR Spennemann, MA, PhD, MICOMOS, APF Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury NSW 2640, Australia. email: [email protected] Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page ii CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 2 2. HUMAN ARTEFACTS ON THE MOON 3 What Have These Missions Left BehinD? 4 Impactor Missions 10 Lander Missions 11 Rover Missions 11 Sample Return Missions 11 Human Missions 11 The Lunar Environment & ImpLications for Artefact Preservation 13 Decay caused by ascent module 15 Decay by solar radiation 15 Human Interference 16 3. -
Quiz Station 1
Quiz station 1. Where did the Eagle land? Tranquility Base 2. Which of these were a direct spin-off from space research? Scratch-resistant lenses Disc brakes Catalytic converter Freeze dried food The computer mouse CAT Scanners Handheld battery vacuum Foil blankets cleaners Wireless headsets Tetra Pak cartons Development of disc-type brakes began in England in the 1890s The first catalytic converter was developed around 1950 for use in smoke stacks. It was invented by the French engineer Eugene Houdry. However, widespread use of the catalytic converter in cars began only in 1975, when regulations restricting air pollution produced by automobiles were introduced 1951 AB Tetra Pak is established in Lund Sweden, by Ruben Rausing. It starts as a subsidiary of Åkerlund & Rausing. On May 18, the new packaging system is presented to the press and attracts great attention 3. How much rock from the Moon did all the Apollo missions bring back to Earth? 3. • 380.95 kg • (840 lbs) 4. How much rock from the Moon did all the Soviet Union missions bring back to Earth? 4. • 301 g • (0.66 lbs) (10.6 oz) Luna 16 101 g Luna 20 30 g Luna 24 170 g 5. Buzz Aldrin’s mother’s maiden name was? Herschel Collins Dawson Eagle Moon Kennedy Armstrong Apollo Aldrin Galilei 5. Buzz Aldrin’s mother’s maiden name was? Marion Moon 6. Which Apollo mission took the first Moon Buggy (Lunar Roving Vehicle)? 6. Which Apollo mission took the first Moon Buggy (Lunar Roving Vehicle)?? Apollo 11 [1969] Eagle has landed Apollo 12 [1969] Precise Moon landing Apollo 13 [1970] Returned to Earth due to emergency Apollo 14 [1971] First colour TV images from lunar surface Apollo 15 [1971] Moon Buggy. -
Apollo 16 (Descartes) Landing Site Road Log
UNITED STATES - DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY LIBRARY LUNAR _JEXAS 77058 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. Prepared by the Geological Survey for the National Aeronautics and Space Administration INTERAGENCY REPORT: ASTROGEOLOGY 46 APOLLO 16 (DESCARTES) LANDING SITE ROAD LOG by E. L. Boudette, J. P. Schafer, and D. P. Elston April 1972 This report concerns work done on behalf of the National Aeronautics and Space Administration Manned Spacecraft Genter, Houston, Texas NASA Contract T-5874-A CONTENTS page EVA I. 1 EVA II 4 EVA III 12 iii APOLLO 16 (DESCARTES) LANDING SITE ROAD LOG l/ 2/ by E. L. Baudette, J. P. Schafer, and D. P. Elston EVA I 0.0 KM Leave ALSEP area on azimuth 280°; distance to Station 1 is Drive over undulating terrain of irregular unit of the Cayley Formation with degraded craters up to about 50 m across. 0.3 Cross northeast-trending filigree (possible layering) shown by low, sinuous escarpment. 0.8 Area of Station 2, North Rim of Spook (degraded crater) Convex escarpment about 5 m high facing southeast, which may require slight detour to north. Boulders ~s m l/This road log is intended for use with the following materials: (a) U. S. Geological Survey, 1972, Apollo 16 (Descartes) Sur- face Data Package (1:12,500 and 1:25,000-scale maps): [unpublished]. (b) Baudette, E. L., Schafer, J. P., and Elston, D. P., 1972, Engineering geology of the Apollo 16 (Descartes) traverse area (1~12,500-scale): U.S. -
04-16-1972 Apollo 16.Indd
This Day in History… April 16, 1972 Apollo 16 Launches Apollo 16 launched from the Kennedy Space Center in Florida at 12:54 p.m. on April 16, 1972. It was the 10th crewed Apollo mission and the fifth (out of six total) to land on the Moon. The mission had three main goals – to study and collect samples from the Descartes region, set up surface experiments, and perform in-flight experiments and photographic work while in lunar orbit. NASA selected the Descartes landing site because they believed it may have been the sight of ancient volcanoes. It would also allow them to collect older lunar material than was collected during Apollo 16 was the fifth manned previous missions. The Apollo 16 crew consisted of John W. Young, mission to land on the Moon. Thomas K. Mattingly II, and Charles M. Duke Jr. After liftoff, the lunar module encountered two problems that ultimately delayed its landing on the moon and cut the mission short by one day. The lunar module touched down on the moon at about 9:24 p.m. Eastern Time on April 20. Young and Duke landed about 905 feet northwest of the intended spot. The two remained on the surface for the next 71 hours. During that time, they conducted three EVAs (extra-vehicular activity), for a total of 20 hours, 14 minutes. During their first EVA they set up the Lunar Roving Vehicle and Apollo Lunar Surface Experiments Package (ALSEP). They then took the rover to Flag Crater to take samples and photographs. On the return drive, they stopped at Spook Crater and took measurements with the lunar portable magnetometer. -
Apollo 16 Press
.. Arii . cLyI( ’ JOHN F . KENNEDY Si ACE GENTEb @@C€ i!AM LIB XRY cJ- / NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D . C . 20546 202-755-8370 I FOR RELEASE: THURSDAY A .M . RELEASE NO: 12-64X April 6. 1972 PRO IFCT. APOLLO 16 (To be launched no earlier than April 16) E GENERAL RELEASE ..................... .1-5 COUNTDOWN ........................ 6-10 Launch Windows ................... .9 Ground Elapsed Time Update ............. .10 LAUNCH AND MISSION PROFILE ............... 11-39 Launch Events .................... 15-16 Mission Events .............. ..... 19-24 EVA Mission Events ................. 29-39 APOLLO 16 MISSION OBJECTIVES .............. 40-41 SCIENTIFIC RESULTS OF APOLLO 11, 12. 14 AND 15 MISSIONS . 42-44 APOLLO 16 LANDING SITE ................. 45-47 LUNAR SURFACE SCIENCE .................. 48-85 Passive Seismic Experiment ............. 48-52 ALSEP to Impact Distance Table ...... ..... 52-55 Lunar Surface Magnetometer ............. 55-58 Magnetic Lunar sample Returned to the Moon ..... .59 K Lunar Heat Flow Experiment ............. 60-65 ALSEP Central Station ................ .65 SNAP-27 .. Power Source for ALSEP .......... 66-67 Soil Mechanics ................... .68 I Lunar Portable Magnetometer ............. 68-71 Far Ultraviolet Camera/Spectroscope ......... 71-73 Solar Wind Composition Experiment .......... .73 Cosmic Ray Detector ................. .74 T Lunar Geology Investigation........ ..... 75-78 Apollo Lunar Geology Hand Tools ........... 79-85 LUNAR ORBITAL SCIENCE ............. ...... 86-98 Gamma-Ray