Draft Genome Sequences of Three Fungal-Interactive Paraburkholderia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Fungus-Bacteria Interactions in Decomposing Wood: Unravelling Community Effects
Fungus-bacteria interactions in decomposing wood: unravelling community effects A thesis submitted to Cardiff University for the degree of Doctor of Philosophy By Sarah Rose Johnston, B.Sc (Hons) September 2017 DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ……………………………………………………… (candidate) Date ………………….…………….……… STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of Ph.D. Signed ………………………………………….…………… (candidate) Date …………………………….…………… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ……………………………………….……….…… (candidate) Date …………………….………………… STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed ……………………………………………..…..….. (candidate) Date ………………………………………… STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed ……………………………………………..……… (candidate) Date ………………………………….……… i Blessed be the name of God forever and ever, to whom belong wisdom and might. -
The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia Sp
fmicb-11-00581 April 19, 2020 Time: 8:50 # 1 ORIGINAL RESEARCH published: 21 April 2020 doi: 10.3389/fmicb.2020.00581 The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato Johannes B. Herpell1, Florian Schindler1, Mersad Bejtovic´ 1, Lena Fragner1,2, Bocar Diallo1, Anke Bellaire3, Susanne Kublik4, Bärbel U. Foesel4, Silvia Gschwendtner4, Melina Kerou5, Michael Schloter4 and Wolfram Weckwerth1,2* 1 Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria, 2 Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria, 3 Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria, 4 Research Unit Edited by: for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, 5 Michele Perazzolli, Neuherberg, Germany, Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Trento, Italy University of Vienna, Vienna, Austria Reviewed by: Stéphane Compant, The genus Paraburkholderia includes a variety of species with promising features for Austrian Institute of Technology (AIT), sustainable biotechnological solutions in agriculture through increasing crop productivity. Austria Lionel Moulin, Here, we present a novel Paraburkholderia isolate, a permanent and predominant Institut de Recherche Pour le member of the Dioscoreae bulbifera (yam family, Dioscoreaceae) -
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’. -
A Novel Inducible Prophage from the Mycosphere Inhabitant Paraburkholderia Terrae BS437 Pratama, Akbar Adjie; Van Elsas, Jan Dirk
University of Groningen A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437 Pratama, Akbar Adjie; van Elsas, Jan Dirk Published in: Scientific Reports DOI: 10.1038/s41598-017-09317-8 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A., & van Elsas, J. D. (2017). A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Scientific Reports, 7, [9156]. https://doi.org/10.1038/s41598-017-09317-8 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. -
Paraburkholderia Phymatum Homocitrate Synthase Nifv Plays a Key Role for Nitrogenase Activity During Symbiosis with Papilionoids and in Free-Living Growth Conditions
cells Article Paraburkholderia phymatum Homocitrate Synthase NifV Plays a Key Role for Nitrogenase Activity during Symbiosis with Papilionoids and in Free-Living Growth Conditions Paula Bellés-Sancho 1 , Martina Lardi 1, Yilei Liu 1, Sebastian Hug 1, Marta Adriana Pinto-Carbó 1, Nicola Zamboni 2 and Gabriella Pessi 1,* 1 Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; [email protected] (P.B.-S.); [email protected] (M.L.); [email protected] (Y.L.); [email protected] (S.H.); [email protected] (M.A.P.-C.) 2 ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-63-52904 Abstract: Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including Citation: Bellés-Sancho, P.; Lardi, M.; papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum Liu, Y.; Hug, S.; Pinto-Carbó, M.A.; harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for Zamboni, N.; Pessi, G. -
Impacts of Paraburkholderia Phytofirmans Strain Psjn on Tomato
Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature Alaa Issa, Qassim Esmaeel, Lisa Sanchez, Barbara Courteaux, Jean-Francois Guise, Yves Gibon, Patricia Ballias, Christophe Clément, Cedric Jacquard, Nathalie Vaillant-Gaveau, et al. To cite this version: Alaa Issa, Qassim Esmaeel, Lisa Sanchez, Barbara Courteaux, Jean-Francois Guise, et al.. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, Frontiers, 2018, 9, pp.1397. 10.3389/fpls.2018.01397. hal- 02620887 HAL Id: hal-02620887 https://hal.inrae.fr/hal-02620887 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fpls-09-01397 October 16, 2018 Time: 14:57 # 1 ORIGINAL RESEARCH published: 18 October 2018 doi: 10.3389/fpls.2018.01397 Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature Alaa -
Molecular Signatures and Phylogenomic Analysis Of
ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp. -
Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In
Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp. -
Molecular Signatures and Phylogenomic
ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp. -
Phenolic Acid-Degrading Paraburkholderia Prime Decomposition in Forest Soil
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317347; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil Roland C. Wilhelm1†*, Christopher M. DeRito2†, James P. Shapleigh2, Eugene L. Madsen2∞ and Daniel H. Buckley1 1 School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA 2 Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA † These authors contributed equally to the work. ∞ Deceased August 9th, 2017 *Corresponding Author: Dr. Roland C. Wilhelm Current address: School of Integrative Plant Science, 306 Tower Road, Cornell University, Ithaca, NY 14853 Telephone: +1 607-255-1716 E-mail: [email protected] Running Title: “Phenolic acid-degrading bacteria and soil priming” Keywords: soil ecology, carbon cycling, priming effect, Paraburkholderia, forest soil, stable isotope probing, p-hydroxybenzoic acid, pobA. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317347; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract 1 Plant-derived phenolic acids are metabolized by soil microorganisms whose activity may 2 enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic 3 acid-degrading bacteria would enhance SOC mineralization in forest soils when primed with 13C- 4 labeled p-hydroxybenzoic acid (PHB). We further investigated whether PHB-induced priming 5 could explain differences in SOC content among mono-specific tree plantations in a 70-year-old 6 common garden experiment. -
Inoculation of Mimosa Pudica with Paraburkholderia Phymatum
Microbes Environ. 36(1), 2021 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME20153 Inoculation of Mimosa Pudica with Paraburkholderia phymatum Results in Changes to the Rhizoplane Microbial Community Structure Shashini U Welmillage1†, Qian Zhang2†, Virinchipuram S Sreevidya1, Michael J Sadowsky2*, and Prasad Gyaneshwar1* 1Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA; and 2Department of Soil and Water and Climate, University of Minnesota, St. Paul, MN 55108, USA (Received December 9, 2020—Accepted January 21, 2021—Published online March 12, 2021) Nitrogen fixing symbiosis between rhizobia and legumes contributes significant amounts of N to agricultural and natural environments. In natural soils, rhizobia compete with indigenous bacterial communities to colonize legume roots, which leads to symbiotic interactions. However, limited information is currently available on the effects of the rhizobial symbiont on the resident microbial community in the legume rhizosphere, rhizoplane, and endosphere, which is partly due to the presence of native nodulating rhizobial strains. In the present study, we used a symbiotic system comprised of Paraburkholderia phymatum and Mimosa pudica to examine the interaction of an inoculant strain with indigenous soil bacteria. The effects of a symbiont inoculation on the native bacterial community was investigated using high throughput sequencing and an analysis of 16S rRNA gene amplicons. The results obtained revealed that the inoculation induced significant alterations in the microbial community present in the rhizoplane+endosphere of the roots, with 13 different taxa showing significant changes in abundance. No significant changes were observed in the rhizospheric soil. The relative abundance of P. phymatum significantly increased in the rhizoplane+endosphere of the root, but significant decreased in the rhizospheric soil.