Inoculation of Mimosa Pudica with Paraburkholderia Phymatum

Total Page:16

File Type:pdf, Size:1020Kb

Inoculation of Mimosa Pudica with Paraburkholderia Phymatum Microbes Environ. 36(1), 2021 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME20153 Inoculation of Mimosa Pudica with Paraburkholderia phymatum Results in Changes to the Rhizoplane Microbial Community Structure Shashini U Welmillage1†, Qian Zhang2†, Virinchipuram S Sreevidya1, Michael J Sadowsky2*, and Prasad Gyaneshwar1* 1Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA; and 2Department of Soil and Water and Climate, University of Minnesota, St. Paul, MN 55108, USA (Received December 9, 2020—Accepted January 21, 2021—Published online March 12, 2021) Nitrogen fixing symbiosis between rhizobia and legumes contributes significant amounts of N to agricultural and natural environments. In natural soils, rhizobia compete with indigenous bacterial communities to colonize legume roots, which leads to symbiotic interactions. However, limited information is currently available on the effects of the rhizobial symbiont on the resident microbial community in the legume rhizosphere, rhizoplane, and endosphere, which is partly due to the presence of native nodulating rhizobial strains. In the present study, we used a symbiotic system comprised of Paraburkholderia phymatum and Mimosa pudica to examine the interaction of an inoculant strain with indigenous soil bacteria. The effects of a symbiont inoculation on the native bacterial community was investigated using high throughput sequencing and an analysis of 16S rRNA gene amplicons. The results obtained revealed that the inoculation induced significant alterations in the microbial community present in the rhizoplane+endosphere of the roots, with 13 different taxa showing significant changes in abundance. No significant changes were observed in the rhizospheric soil. The relative abundance of P. phymatum significantly increased in the rhizoplane+endosphere of the root, but significant decreased in the rhizospheric soil. While the rhizosphere, rhizoplane, and root endosphere contained a wide diversity of bacteria, the nodules were predominantly colonized by P. phymatum. A network analysis revealed that the operational taxonomic units of Streptomyces and Phycicoccus were positively associated with P. phymatum as potential keystone taxa. Collectively, these results suggest that the success of an inoculated symbiont depends on its ability to colonize the roots in the face of competition by other soil bacteria. A more detailed understanding of the mechanisms by which an inoculated strain colonizes its plant host is crucial for realizing the full potential of microbial inoculants in sustainable agriculture. Key words: Rhizosphere, Nodulation, Inoculation, 16SrDNA Nitrogen-fixing symbiosis between legumes and rhizobia in detail (Oldroyd et al., 2011; Oldroyd, 2013; is a major contributor to the global nitrogen cycle (Sprent Venkateshwaran et al., 2013) and typically start with the and James, 2007). We herein use the word rhizobia to col‐ colonization of and attachment to plant roots (and some‐ lectively refer to all bacteria forming nitrogen-fixing nod‐ times stems) (Poole et al., 2018; Wheatley and Poole, ules on legumes, regardless of taxonomy. In agricultural 2018). However, limited information is currently available systems, these symbiotic relationships have been estimated on the genetic and physiologic traits that are important for to contribute more than 80% of fixed nitrogen (O’Hara, inoculated rhizobia that need to survive and compete with 1998). Rhizobial inoculants are extensively utilized to other soil microbes to reach and colonize legume roots enhance the growth of crop legumes (Deaker et al., 2004; (Poole et al., 2018). Moreover, soil edaphic factors, the Narożna et al., 2015; Parnell et al., 2016). However, in number of indigenous rhizobia, biotic-biotic interactions, many cases, these inoculants fail to increase crop productiv‐ and climate all play critical roles in the success of added ity due to competition by indigenous rhizobia that are more legume inoculants (Triplett and Sadowsky, 1992). A more adapted to the local soil environment (Triplett and detailed understanding of this process is crucial for realizing Sadowsky, 1992). Rhizobial interactions with host legumes the full potential of nitrogen-fixing and plant growth- under axenic laboratory conditions have been characterized promoting microbial inoculants in commercial agriculture. The soil immediately in contact with plant roots (the rhi‐ zosphere) is rich in microbial numbers and diversity, in large * Corresponding authors. part due to the secretion of substantial amounts of carbon, Gyaneshwar Prasad: E-mail: [email protected]; Tel: +1–414–229–5298; Fax: +1–414–229–3926. nitrogenous compounds, and other nutrients into the rhizo‐ Michael J Sadowsky: E-mail: [email protected]; sphere (Walker et al., 2003; Jones et al., 2009). The major‐ Tel: +1–612–624–2706; Fax: +1–612–625–5780. ity of the thus far characterized legume-nodulating rhizobia † These authors contributed equally to this work. belonging to Alphaproteobacteria are metabolically diverse Citation: Welmillage, S. U., Zhang, Q., Sreevidya, V. S., Sadowsky, and function well as soil saprophytes in the absence of M. J., and Gyaneshwar, P. (2021) Inoculation of Mimosa Pudica with legumes (Poole et al., 2018). In addition to bulk and rhizo‐ Paraburkholderia phymatum Results in Changes to the Rhizoplane sphere soil, other plant compartments and microhabitats Microbial Community Structure. Microbes Environ 36: ME20153. impacted by soil bacteria and inoculants include the rhizo‐ https://doi.org/10.1264/jsme2.ME20153 plane and endosphere (Clúa et al., 2018; Zhang et al., 2019). Article ME20153 Welmillage et al. Due to the presence of resident indigenous rhizobia in with a 14/10-h light/dark cycle. Plants were watered with modified soil, difficulties are associated with introducing superior Jensen’s nitrogen-free medium as needed. In the bacterial com‐ inoculant strains (Yates et al., 2011; Parnell et al., 2016; munity analysis, seedlings were planted in a 1:1 ratio of vermicu‐ lite and the same soil, but in plastic trays with drainage. Each tray Chibeba et al., 2017) and elucidating the fate of the inocu‐ contained forty seedlings, and three trays were inoculated with lated rhizobia using the 16S rRNA sequences typically independently grown P. phymatum MP20-GUS (~108 bacteria per employed in microbial community analyses. Similarly, the tray). Plants were incubated as described above. majority of other molecular methods cannot differentiate between added inoculant strains and the rhizobia already Plant colonization and nodulation present in the resident population. Plant colonization and nodulation were examined as previously described (Gehlot et al., 2013). Briefly, plants were removed from In the last few decades, some strains of Betaproteobacteria the soil mix 14 days after inoculation (DAI), and the roots were within the genera Burkholderia (Paraburkholderia) and visually observed for nodule formation. Roots were stained for Cupriavidus have been identified as symbionts of legumes, GUS activity using X-gluc (5-bromo-4-chloro-3-indolyl-β-D- such as Mimosa pudica. While M. pudica and its symbiont glucuronic acid) to confirm the presence of inoculated P. (Paraburkholderia phymatum) are prevalent in South Amer‐ phymatum MP20-GUS. Stained nodules were observed and ica and Asia, they have not yet been reported in the Mid‐ counted using a dissecting microscope. western United States (Gyaneshwar et al., 2011). Soils that Effects of the inoculant on soil and the rhizosphere microbiome lack specific rhizobia provide an opportunity to examine the To examine the effects of the P. phymatum inoculation on the interactions of an inoculant strain with indigenous bacteria bacterial community structure, the rhizosphere and rhizoplane- and investigate root colonization in situ. A more detailed endosphere soil, roots, and nodules were collected 0, 3, 7, and 14 understanding of these interactions and the mechanisms DAI. Ten plants were taken for each time point (Fig. S1). Briefly, involved may provide a means to enhance nodulation and on 0 and 3 DAI, plants were gently removed from the pot, and closely adhering rhizosphere soil was removed with the aid of a subsequently N2 fixation by legumes in their non-native environments. sterile spatula. The roots were then separated from rhizosphere soil and homogenized in liquid nitrogen using a mortar and pestle to In the present study, we used a soil devoid of indigenous obtain rhizoplane plus endosphere samples. Regarding samples M. pudica-nodulating rhizobia to examine host-bacterial collected on 7 and 14 DAI, plants were gently pulled from the pot, interactions in the absence of competition from nodulating and the attached rhizosphere soil was collected by gentle shaking strains. We further utilized this symbiosis to assess changes and the use of forceps. Tightly adherent soil and the roots were in the bacterial community of M. pudica in the rhizosphere, homogenized to obtain rhizoplane samples (this fraction may also rhizoplane, and endosphere upon an inoculation with P. contain endospheric microbiota). Nodules were collected on 14 phymatum. The results obtained showed that while the pop‐ DAI, washed with sterile water, and homogenized. Ground sam‐ ples were used to isolate DNA with the Qiagen® DNeasy Power‐ ulation of P. phymatum increased in the rhizoplane of M. Lyzer® PowerSoil® kit (Qiagen) according to manufacturer’s pudica following the soil inoculation, no significant changes instructions
Recommended publications
  • The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia Sp
    fmicb-11-00581 April 19, 2020 Time: 8:50 # 1 ORIGINAL RESEARCH published: 21 April 2020 doi: 10.3389/fmicb.2020.00581 The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato Johannes B. Herpell1, Florian Schindler1, Mersad Bejtovic´ 1, Lena Fragner1,2, Bocar Diallo1, Anke Bellaire3, Susanne Kublik4, Bärbel U. Foesel4, Silvia Gschwendtner4, Melina Kerou5, Michael Schloter4 and Wolfram Weckwerth1,2* 1 Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria, 2 Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria, 3 Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria, 4 Research Unit Edited by: for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, 5 Michele Perazzolli, Neuherberg, Germany, Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Trento, Italy University of Vienna, Vienna, Austria Reviewed by: Stéphane Compant, The genus Paraburkholderia includes a variety of species with promising features for Austrian Institute of Technology (AIT), sustainable biotechnological solutions in agriculture through increasing crop productivity. Austria Lionel Moulin, Here, we present a novel Paraburkholderia isolate, a permanent and predominant Institut de Recherche Pour le member of the Dioscoreae bulbifera (yam family, Dioscoreaceae)
    [Show full text]
  • Draft Genome Sequences of Three Fungal-Interactive Paraburkholderia
    Pratama et al. Standards in Genomic Sciences (2017) 12:81 DOI 10.1186/s40793-017-0293-8 EXTENDED GENOME REPORT Open Access Draft genome sequences of three fungal-interactive Paraburkholderia terrae strains, BS007, BS110 and BS437 Akbar Adjie Pratama1* , Irshad Ul Haq1, Rashid Nazir2, Maryam Chaib De Mares1 and Jan Dirk van Elsas1* Abstract Here, we report the draft genome sequences of three fungal-interactive Paraburkholderia terrae strains, denoted BS110, BS007 and BS437. Phylogenetic analyses showed that the three strains belong to clade II of the genus Burkholderia, which was recently renamed Paraburkholderia. This novel genus primarily contains environmental species, encompassing non-pathogenic plant- as well as fungal-interactive species. The genome of strain BS007 consists of 11,025,273 bp, whereas those of strains BS110 and BS437 have 11,178,081 and 11,303,071 bp, respectively. Analyses of the three annotated genomes revealed the presence of (1) a large suite of substrate capture systems, and (2) a suite of genetic systems required for adaptation to microenvironments in soil and the mycosphere. Thus, genes encoding traits that potentially confer fungal interactivity were found, such as type 4 pili, type 1, 2, 3, 4 and 6 secretion systems, and biofilm formation (PGA, alginate and pel) and glycerol uptake systems. Furthermore, the three genomes also revealed the presence of a highly conserved five-gene cluster that had previously been shown to be upregulated upon contact with fungal hyphae. Moreover, a considerable number of prophage-like and CRISPR spacer sequences was found, next to genetic systems responsible for secondary metabolite production. Overall, the three P.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • A Novel Inducible Prophage from the Mycosphere Inhabitant Paraburkholderia Terrae BS437 Pratama, Akbar Adjie; Van Elsas, Jan Dirk
    University of Groningen A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437 Pratama, Akbar Adjie; van Elsas, Jan Dirk Published in: Scientific Reports DOI: 10.1038/s41598-017-09317-8 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A., & van Elsas, J. D. (2017). A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Scientific Reports, 7, [9156]. https://doi.org/10.1038/s41598-017-09317-8 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Paraburkholderia Phymatum Homocitrate Synthase Nifv Plays a Key Role for Nitrogenase Activity During Symbiosis with Papilionoids and in Free-Living Growth Conditions
    cells Article Paraburkholderia phymatum Homocitrate Synthase NifV Plays a Key Role for Nitrogenase Activity during Symbiosis with Papilionoids and in Free-Living Growth Conditions Paula Bellés-Sancho 1 , Martina Lardi 1, Yilei Liu 1, Sebastian Hug 1, Marta Adriana Pinto-Carbó 1, Nicola Zamboni 2 and Gabriella Pessi 1,* 1 Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; [email protected] (P.B.-S.); [email protected] (M.L.); [email protected] (Y.L.); [email protected] (S.H.); [email protected] (M.A.P.-C.) 2 ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-63-52904 Abstract: Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including Citation: Bellés-Sancho, P.; Lardi, M.; papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum Liu, Y.; Hug, S.; Pinto-Carbó, M.A.; harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for Zamboni, N.; Pessi, G.
    [Show full text]
  • Impacts of Paraburkholderia Phytofirmans Strain Psjn on Tomato
    Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature Alaa Issa, Qassim Esmaeel, Lisa Sanchez, Barbara Courteaux, Jean-Francois Guise, Yves Gibon, Patricia Ballias, Christophe Clément, Cedric Jacquard, Nathalie Vaillant-Gaveau, et al. To cite this version: Alaa Issa, Qassim Esmaeel, Lisa Sanchez, Barbara Courteaux, Jean-Francois Guise, et al.. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, Frontiers, 2018, 9, pp.1397. 10.3389/fpls.2018.01397. hal- 02620887 HAL Id: hal-02620887 https://hal.inrae.fr/hal-02620887 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fpls-09-01397 October 16, 2018 Time: 14:57 # 1 ORIGINAL RESEARCH published: 18 October 2018 doi: 10.3389/fpls.2018.01397 Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature Alaa
    [Show full text]
  • Molecular Signatures and Phylogenomic Analysis Of
    ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp.
    [Show full text]
  • Molecular Signatures and Phylogenomic
    ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp.
    [Show full text]
  • Phenolic Acid-Degrading Paraburkholderia Prime Decomposition in Forest Soil
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317347; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil Roland C. Wilhelm1†*, Christopher M. DeRito2†, James P. Shapleigh2, Eugene L. Madsen2∞ and Daniel H. Buckley1 1 School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA 2 Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA † These authors contributed equally to the work. ∞ Deceased August 9th, 2017 *Corresponding Author: Dr. Roland C. Wilhelm Current address: School of Integrative Plant Science, 306 Tower Road, Cornell University, Ithaca, NY 14853 Telephone: +1 607-255-1716 E-mail: [email protected] Running Title: “Phenolic acid-degrading bacteria and soil priming” Keywords: soil ecology, carbon cycling, priming effect, Paraburkholderia, forest soil, stable isotope probing, p-hydroxybenzoic acid, pobA. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317347; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract 1 Plant-derived phenolic acids are metabolized by soil microorganisms whose activity may 2 enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic 3 acid-degrading bacteria would enhance SOC mineralization in forest soils when primed with 13C- 4 labeled p-hydroxybenzoic acid (PHB). We further investigated whether PHB-induced priming 5 could explain differences in SOC content among mono-specific tree plantations in a 70-year-old 6 common garden experiment.
    [Show full text]
  • Draft Genome of Paraburkholderia Caballeronis Tne-841T, a Free-Living
    Rojas-Rojas et al. Standards in Genomic Sciences (2017) 12:80 DOI 10.1186/s40793-017-0294-7 SHORT GENOME REPORT Open Access Draft genome of Paraburkholderia caballeronis TNe-841T, a free-living, nitrogen-fixing, tomato plant-associated bacterium Fernando Uriel Rojas-Rojas1, Erika Yanet Tapia-García1, Maskit Maymon2, Ethan Humm2, Marcel Huntemann3, Alicia Clum3, Manoj Pillay3, Krishnaveni Palaniappan3, Neha Varghese3, Natalia Mikhailova3, Dimitrios Stamatis3, T. B. K. Reddy3, Victor Markowitz3, Natalia Ivanova3, Nikos Kyrpides3, Tanja Woyke3, Nicole Shapiro3, Ann M. Hirsch2,4 and Paulina Estrada-de los Santos1* Abstract Paraburkholderia caballeronis is a plant-associated bacterium. Strain TNe-841T was isolated from the rhizosphere of tomato (Solanum lycopersicum L. var. lycopersicum) growing in Nepantla Mexico State. Initially this bacterium was found to effectively nodulate Phaseolus vulgaris L. However, from an analysis of the genome of strain TNe-841T and from repeat inoculation experiments, we found that this strain did not nodulate bean and also lacked nodulation genes, suggesting that the genes were lost. The genome consists of 7,115,141 bp with a G + C content of 67.01%. The sequence includes 6251 protein-coding genes and 87 RNA genes. Keywords: Paraburkholderia caballeronis, Tomato plant, Rhizosphere, Nitrogen fixation, Root nodulation Introduction ThegenomesequenceofP. caballeronis TNe-841T was Paraburkholderia caballeronis was isolated in the State obtained in cooperation with JGI-DOE. The type species is of Mexico, Mexico from the tomato rhizosphere as a TNe-841T (= LMG 26416T = CIP 110324T). free-living, nitrogen-fixing bacterial species [1]. It was described as B. caballeronis and found to nodulate Phaseolus vulgaris L. [2].
    [Show full text]
  • Paraburkholderia Strydomiana Sp. Nov. and Paraburkholderia Steynii Sp
    Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides Chrizelle W. Beukes1, Emma T. Steenkamp1, Elritha van Zyl1, Juanita Avontuur1, Wai Yin Chan1,3, Ahmed Idris Hassen2, Marike Palmer1, Lunghile S. Mthombeni1, Francina L. Phalane2, T. Karabo Sereme1, Stephanus N. Venter1 1Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng 0002, South Africa 2Agricultural Research Council (ARC), Plant Health and Protection Institute, Pretoria, Gauteng 0002, South Africa 3Agricultural Research Council (ARC), Biotechnology Platform, Onderstepoort, Gauteng 0110, South Africa Corresponding author: Emma T. Steenkamp ([email protected]) Tel +27 12 420 3262 Abstract Twelve nodulating Paraburkholderia strains isolated from indigenous South African fynbos legume Hypocalyptus sophoroides were investigated to determine their taxonomic status. Genealogical concordance analysis, based on six loci (16S rRNA, atpD, recA, rpoB, lepA and gltB), revealed that they separate into two consistent and exclusive groups. Average nucleotide identity and DNA-DNA hybridisation comparisons indicated that they were sufficiently divergent from their closest known phylogenetic relatives (Paraburkholderia caledonica and Paraburkholderia terrae, respectively) to be regarded as novel species. This was also 1 supported by the results of fatty acid analysis and metabolic characterisation. For these two isolate groups, we accordingly propose the new species Paraburkholderia strydomiana sp. nov. with WK1.1fT (= LMG 28731T = SARCC1213T) as its type strain and Paraburkholderia steynii sp. nov. with HC1.1baT (= LMG 28730T = SARCC696T) as its type strain. Our data thus showed that H. sophoroides may be considered a promiscuous symbiotic partner due to its ability to associate with multiple species of Paraburkholderia.
    [Show full text]
  • Genomic Features and Insights Into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species
    International Journal of Molecular Sciences Review Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species Mohamed Mannaa 1 , Inmyoung Park 2 and Young-Su Seo 1,* 1 Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; [email protected] 2 Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-510-2267 Received: 13 December 2018; Accepted: 24 December 2018; Published: 29 December 2018 Abstract: The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
    [Show full text]