Genome Data Provides High Support for Generic Boundaries in Burkholderia Sensu Lato

Total Page:16

File Type:pdf, Size:1020Kb

Genome Data Provides High Support for Generic Boundaries in Burkholderia Sensu Lato fmicb-08-01154 June 23, 2017 Time: 16:52 # 1 ORIGINAL RESEARCH published: 26 June 2017 doi: 10.3389/fmicb.2017.01154 Genome Data Provides High Support for Generic Boundaries in Burkholderia Sensu Lato Chrizelle W. Beukes1, Marike Palmer1, Puseletso Manyaka1, Wai Y. Chan1, Juanita R. Avontuur1, Elritha van Zyl1, Marcel Huntemann2, Alicia Clum2, Manoj Pillay2, Krishnaveni Palaniappan2, Neha Varghese2, Natalia Mikhailova2, Dimitrios Stamatis2, T. B. K. Reddy2, Chris Daum2, Nicole Shapiro2, Victor Markowitz2, Natalia Ivanova2, Nikos Kyrpides2, Tanja Woyke2, Jochen Blom3, William B.Whitman4, Stephanus N. Venter1* and Emma T. Steenkamp1 1 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa, 2 DOE Joint Genome Institute, Walnut Creek, CA, United States, 3 Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany, 4 Department of Microbiology, University of Georgia, Athens, GA, United States Edited by: Sabela Balboa Méndez, Although the taxonomy of Burkholderia has been extensively scrutinized, significant Universidade de Santiago uncertainty remains regarding the generic boundaries and composition of this large de Compostela, Spain and heterogeneous taxon. Here we used the amino acid and nucleotide sequences Reviewed by: of 106 conserved proteins from 92 species to infer robust maximum likelihood Paulina Estrada De Los Santos, Instituto Politécnico Nacional, Mexico phylogenies with which to investigate the generic structure of Burkholderia sensu lato. Radhey S. Gupta, These data unambiguously supported five distinct lineages, of which four correspond McMaster University, Canada to Burkholderia sensu stricto and the newly introduced genera Paraburkholderia, *Correspondence: Stephanus N. Venter Caballeronia, and Robbsia. The fifth lineage was represented by P. rhizoxinica. Based [email protected] on these findings, we propose 13 new combinations for those species previously described as members of Burkholderia but that form part of Caballeronia. These findings Specialty section: This article was submitted to also suggest revision of the taxonomic status of P. rhizoxinica as it is does not form Evolutionary and Genomic part of any of the genera currently recognized in Burkholderia sensu lato. From a Microbiology, a section of the journal phylogenetic point of view, Burkholderia sensu stricto has a sister relationship with the Frontiers in Microbiology CaballeroniaCParaburkholderia clade. Also, the lineages represented by P. rhizoxinica Received: 20 April 2017 and R. andropogonis, respectively, emerged prior to the radiation of the Burkholderia Accepted: 07 June 2017 sensu strictoCCaballeroniaCParaburkholderia clade. Our findings therefore constitute a Published: 26 June 2017 solid framework, not only for supporting current and future taxonomic decisions, but also Citation: Beukes CW, Palmer M, Manyaka P, for studying the evolution of this assemblage of medically, industrially and agriculturally Chan WY, Avontuur JR, van Zyl E, important species. Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Keywords: Burkholderia, Paraburkholderia, Caballeronia, phylogenomics, Robbsia andropogonis, Burkholderia Mikhailova N, Stamatis D, rhizoxinica Reddy TBK, Daum C, Shapiro N, Markowitz V, Ivanova N, Kyrpides N, Woyke T, Blom J, Whitman WB, INTRODUCTION Venter SN and Steenkamp ET (2017) Genome Data Provides High Support The genus Burkholderia was originally introduced to accommodate an assemblage of seven for Generic Boundaries in Burkholderia Sensu Lato. Pseudomonas species (Yabuuchi et al., 1992), two of which were later transferred to Ralstonia Front. Microbiol. 8:1154. (Gillis et al., 1995; Yabuuchi et al., 1995). Since then, the number of Burkholderia species has doi: 10.3389/fmicb.2017.01154 grown substantially, to about 108 in 2015 (Estrada-de los Santos et al., 2016), spanning a range of Frontiers in Microbiology| www.frontiersin.org 1 June 2017| Volume 8| Article 1154 fmicb-08-01154 June 23, 2017 Time: 16:52 # 2 Beukes et al. Generic Boundaries in Burkholderia Sensu Lato human, animal and plant pathogens, as well as numerous available in the public domain. To increase representation of strains with significant biotechnological potential (Depoorter the so-called environmental species, we also determined the et al., 2016; Estrada-de los Santos et al., 2016). The latter sequences for eight additional taxa via Phase III of the GEBA includes the so-called plant beneficial and environmental (Genomic Encyclopedia of Bacterial and Archaeal type strains) (PBE) species (Suárez-Moreno et al., 2012), many of which project (Whitman et al., 2015). These included the rhizobial are plant-associated (e.g., those with plant growth promoting species P. aspalathi (Mavengere et al., 2014) and P. diazotrophica activities, the symbiotic diazotrophs and free-living species with (Sheu et al., 2013), and the soil bacteria P. hospita (Goris et al., diazotrophic, bioremedial and antibiotic activities) (Depoorter 2002), P. phenazinium (Viallard et al., 1998), P. sartisoli (Vanlaere et al., 2016; Estrada-de los Santos et al., 2016). Because of this et al., 2008), P. terricola (Goris et al., 2002), as well as the plant- heterogeneity, new genera [e.g., ‘Caballeronia’ (Gyaneshwar et al., associated diazotrophic species P. caballeronis (Martínez-Aguilar 2011) and ‘Paraburkholderia’ (Sawana et al., 2014)] has been et al., 2013) and P. tropica (Reis et al., 2004). introduced to accommodate most of the PBE species (Oren and Garrity, 2015a,b, 2017), while retaining the pathogens in Burkholderia sensu stricto. Most recently, a third genus, Robbsia MATERIALS AND METHODS was introduced to accommodate the phytopathogen previously referred to as B. andropogonis (Lopes-Santos et al., 2017). Whole-Genome Sequencing of Eight Overall, the taxonomy of Burkholderia sensu lato remains Paraburkholderia Type Strains in significant flux (Estrada-de los Santos et al., 2016). With The eight type strains (P. aspalathi LMG 27731T, P. hospita their review of the group, Estrada-de los Santos et al.(2016) LMG 20598T, P. diazotrophica LMG 206031T, P. phenazinium recognized two monophyletic groups [Groups A and B; A LMG 2247T, P. sartisoli LMG 24000T, P. terricola LMG 20594T, consists of Caballeronia and Paraburkholderia as circumscribed P. tropica LMG 22274T and P. caballeronis LMG 26416T) by Gyaneshwar et al.(2011) and Sawana et al.(2014), respectively, were obtained from the Belgian Coordinated Collections of while Group B includes most of the notable human, animal and Microorganisms (University of Gent, Belgium). Routine growth plant pathogens, as well as the so-called “B. cepacia complex”]. of these bacteria in the laboratory and extraction of high They showed that B. andropogonis (now Robbsia andropogonis) quality genomic DNA were completed as described previously is separated into its own group, and they designated two so- (Steenkamp et al., 2015). Whole genome sequencing was called “Transition Groups” (i.e., 1 and 2; neither were supported performed by the Joint Genome Institute (JGI) following as monophyletic and both contained mainly environmental standard protocols1 and using the Illumina HiSeq-2500 1TB species). Since then, Dobritsa and Samadpour(2016) have platform with an Illumina 300 base pair (bp) insert standard proposed the transfer of species in Transition Group 2 to a shotgun library. new genus. However, to complicate the issue, this new genus All raw sequences were filtered using BBDuk (Bushnell, 2017), was named “Caballeronia” although its proposed usage is not which removes known Illumina artifacts, and PhiX. Reads with synonymous with the one previously proposed by Gyaneshwar more than one “N” or with quality scores (before trimming) et al.(2011) for accommodating all the PBE isolates. averaging less than 8 or reads shorter than 51 bp (after trimming) The proposals to split Burkholderia sensu lato were based were discarded. The remaining reads were mapped to masked almost entirely on evidence from 16S ribosomal RNA (rRNA) versions of human, cat and dog reference sequences using phylogenetic trees with limited and in some cases no statistical BBMap (Bushnell, 2017) and discarded if identity values exceeded support (Gyaneshwar et al., 2011; Dobritsa and Samadpour, 93%. The remaining reads were then assembled into contigs 2016; Eberl and Vandamme, 2016). Even phylogenies based on using Velvet version 1.2.07 (Zerbino and Birney, 2008) (the conventional multilocus sequence analysis (MLSA) using the settings used were velveth: 63 –shortPaired and velvetg: –very combined sequence information for 4–7 genes (Gevers et al., clean yes –exportFiltered yes –min contig lgth 500 –scaffolding 2005) produced phylogenies in which the major groups were no –cov cutoff 10). The Velvet contigs were then used to not supported as monophyletic (Estrada-de los Santos et al., generate 1–3 kbp simulated paired end reads using wgsim 2013). Also, the most comprehensive phylogenetic hypothesis to version 0.3.02 (the settings used were –e 0 –1 100 –2 100 –r date (based on 21 conserved gene sequences) lacked sufficient 0 R 0 –X 0). We then assembled the quality filtered Illumina representation across this diverse assemblage (Sawana et al., reads with the simulated read pairs using Allpaths-LG version 2014). Thus, uncertainties remain regarding the genomic and r46652 (Gnerre and MacCallum, 2011) (the settings used were evolutionary coherence of Burkholderia sensu lato and its PrepareAllpathsInputs:
Recommended publications
  • Whole Genome Analyses Suggests That Burkholderia Sensu Lato Contains Two Additional Novel Genera (Mycetohabitans Gen
    G C A T T A C G G C A T genes Article Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae Paulina Estrada-de los Santos 1,*,† ID , Marike Palmer 2,†, Belén Chávez-Ramírez 1, Chrizelle Beukes 2, Emma T. Steenkamp 2, Leah Briscoe 3, Noor Khan 3 ID , Marta Maluk 4, Marcel Lafos 4, Ethan Humm 3, Monique Arrabit 3, Matthew Crook 5, Eduardo Gross 6 ID , Marcelo F. Simon 7,Fábio Bueno dos Reis Junior 8, William B. Whitman 9, Nicole Shapiro 10, Philip S. Poole 11, Ann M. Hirsch 3,* ID , Stephanus N. Venter 2,* ID and Euan K. James 4,* ID 1 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Cd. de Mexico, Mexico; [email protected] 2 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa; [email protected] (M.P.); [email protected] (C.B.); [email protected] (E.T.S.) 3 Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; [email protected] (L.B.); [email protected] (N.K.); [email protected] (E.H.); [email protected] (M.A.) 4 The James Hutton Institute, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (M.L.) 5 450G Tracy Hall Science Building, Weber State University, Ogden, 84403 UT, USA; [email protected]
    [Show full text]
  • Genomic Comparison of Insect Gut Symbionts from Divergent Burkholderia Subclades
    G C A T T A C G G C A T genes Article Genomic Comparison of Insect Gut Symbionts from Divergent Burkholderia Subclades Kazutaka Takeshita 1,* and Yoshitomo Kikuchi 2,3 1 Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195, Japan 2 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Hokkaido 062-8517, Japan; [email protected] 3 Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan * Correspondence: [email protected] Received: 10 June 2020; Accepted: 1 July 2020; Published: 3 July 2020 Abstract: Stink bugs of the superfamilies Coreoidea and Lygaeoidea establish gut symbioses with environmentally acquired bacteria of the genus Burkholderia sensu lato. In the genus Burkholderia, the stink bug-associated strains form a monophyletic clade, named stink bug-associated beneficial and environmental (SBE) clade (or Caballeronia). Recently, we revealed that members of the family Largidae of the superfamily Pyrrhocoroidea are associated with Burkholderia but not specifically with the SBE Burkholderia; largid bugs harbor symbionts that belong to a clade of plant-associated group of Burkholderia, called plant-associated beneficial and environmental (PBE) clade (or Paraburkholderia). To understand the genomic features of Burkholderia symbionts of stink bugs, we isolated two symbiotic Burkholderia strains from a bordered plant bug Physopellta gutta (Pyrrhocoroidea: Largidae) and determined their complete genomes. The genome sizes of the insect-associated PBE (iPBE) are 9.5 Mb and 11.2 Mb, both of which are larger than the genomes of the SBE Burkholderia symbionts. A whole-genome comparison between two iPBE symbionts and three SBE symbionts highlighted that all previously reported symbiosis factors are shared and that 282 genes are specifically conserved in the five stink bug symbionts, over one-third of which have unknown function.
    [Show full text]
  • Whole Genome Analyses Suggests That Burkholderiasensu Lato Contains Two Additional Novel Genera (Mycetohabitans Gen
    24/09/2018 Genes | Free Full-Text | Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (… Genes 2018, 9(8), 389; doi:10.3390/genes9080389 Article Whole Genome Analyses Suggests that Burkholderiasensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae Paulina Estrada-de los Santos 1,†,* , Marike Palmer 2,† , Belén Chávez-Ramírez 1 , Chrizelle Beukes 2 , Emma T. Steenkamp 2 , Leah Briscoe 3 , Noor Khan 3 , Marta Maluk 4 , Marcel Lafos 4 , Ethan Humm 3 , Monique Arrabit 3 , Matthew Crook 5 , Eduardo Gross 6 , Marcelo F. Simon 7 , Fábio Bueno dos Reis Junior 8 , William B. Whitman 9 , Nicole Shapiro 10 , Philip S. Poole 11 , Ann M. Hirsch 3,* , Stephanus N. Venter 2,* and Euan K. James 4,* 1 Instituto Politécnico Nacional, Escuela Nacional de 2Ciencias Biológicas, 11340 Cd. de Mexico, Mexico Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, 3University of Pretoria, Pretoria 0083, South Africa Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University 4of California, Los Angeles, CA 90095, USA 5The James Hutton Institute, Dundee DD2 5DA, UK 450G Tracy Hall Science Building, Weber State 6University, Ogden, 84403 UT, USA Center for Electron Microscopy, Department of Agricultural and Environmental Sciences, Santa 7Cruz State University, 45662-900 Ilheus, BA, Brazil Embrapa CENARGEN,
    [Show full text]
  • The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia Sp
    fmicb-11-00581 April 19, 2020 Time: 8:50 # 1 ORIGINAL RESEARCH published: 21 April 2020 doi: 10.3389/fmicb.2020.00581 The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato Johannes B. Herpell1, Florian Schindler1, Mersad Bejtovic´ 1, Lena Fragner1,2, Bocar Diallo1, Anke Bellaire3, Susanne Kublik4, Bärbel U. Foesel4, Silvia Gschwendtner4, Melina Kerou5, Michael Schloter4 and Wolfram Weckwerth1,2* 1 Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria, 2 Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria, 3 Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria, 4 Research Unit Edited by: for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, 5 Michele Perazzolli, Neuherberg, Germany, Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Trento, Italy University of Vienna, Vienna, Austria Reviewed by: Stéphane Compant, The genus Paraburkholderia includes a variety of species with promising features for Austrian Institute of Technology (AIT), sustainable biotechnological solutions in agriculture through increasing crop productivity. Austria Lionel Moulin, Here, we present a novel Paraburkholderia isolate, a permanent and predominant Institut de Recherche Pour le member of the Dioscoreae bulbifera (yam family, Dioscoreaceae)
    [Show full text]
  • Draft Genome Sequences of Three Fungal-Interactive Paraburkholderia
    Pratama et al. Standards in Genomic Sciences (2017) 12:81 DOI 10.1186/s40793-017-0293-8 EXTENDED GENOME REPORT Open Access Draft genome sequences of three fungal-interactive Paraburkholderia terrae strains, BS007, BS110 and BS437 Akbar Adjie Pratama1* , Irshad Ul Haq1, Rashid Nazir2, Maryam Chaib De Mares1 and Jan Dirk van Elsas1* Abstract Here, we report the draft genome sequences of three fungal-interactive Paraburkholderia terrae strains, denoted BS110, BS007 and BS437. Phylogenetic analyses showed that the three strains belong to clade II of the genus Burkholderia, which was recently renamed Paraburkholderia. This novel genus primarily contains environmental species, encompassing non-pathogenic plant- as well as fungal-interactive species. The genome of strain BS007 consists of 11,025,273 bp, whereas those of strains BS110 and BS437 have 11,178,081 and 11,303,071 bp, respectively. Analyses of the three annotated genomes revealed the presence of (1) a large suite of substrate capture systems, and (2) a suite of genetic systems required for adaptation to microenvironments in soil and the mycosphere. Thus, genes encoding traits that potentially confer fungal interactivity were found, such as type 4 pili, type 1, 2, 3, 4 and 6 secretion systems, and biofilm formation (PGA, alginate and pel) and glycerol uptake systems. Furthermore, the three genomes also revealed the presence of a highly conserved five-gene cluster that had previously been shown to be upregulated upon contact with fungal hyphae. Moreover, a considerable number of prophage-like and CRISPR spacer sequences was found, next to genetic systems responsible for secondary metabolite production. Overall, the three P.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • A Novel Inducible Prophage from the Mycosphere Inhabitant Paraburkholderia Terrae BS437 Pratama, Akbar Adjie; Van Elsas, Jan Dirk
    University of Groningen A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437 Pratama, Akbar Adjie; van Elsas, Jan Dirk Published in: Scientific Reports DOI: 10.1038/s41598-017-09317-8 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pratama, A. A., & van Elsas, J. D. (2017). A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Scientific Reports, 7, [9156]. https://doi.org/10.1038/s41598-017-09317-8 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Paraburkholderia Phymatum Homocitrate Synthase Nifv Plays a Key Role for Nitrogenase Activity During Symbiosis with Papilionoids and in Free-Living Growth Conditions
    cells Article Paraburkholderia phymatum Homocitrate Synthase NifV Plays a Key Role for Nitrogenase Activity during Symbiosis with Papilionoids and in Free-Living Growth Conditions Paula Bellés-Sancho 1 , Martina Lardi 1, Yilei Liu 1, Sebastian Hug 1, Marta Adriana Pinto-Carbó 1, Nicola Zamboni 2 and Gabriella Pessi 1,* 1 Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; [email protected] (P.B.-S.); [email protected] (M.L.); [email protected] (Y.L.); [email protected] (S.H.); [email protected] (M.A.P.-C.) 2 ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-44-63-52904 Abstract: Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including Citation: Bellés-Sancho, P.; Lardi, M.; papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum Liu, Y.; Hug, S.; Pinto-Carbó, M.A.; harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for Zamboni, N.; Pessi, G.
    [Show full text]
  • Broad-Spectrum Antimicrobial Activity by Burkholderia Cenocepacia Tatl-371, a Strain Isolated from the Tomato Rhizosphere
    RESEARCH ARTICLE Rojas-Rojas et al., Microbiology DOI 10.1099/mic.0.000675 Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere Fernando Uriel Rojas-Rojas,1 Anuar Salazar-Gómez,1 María Elena Vargas-Díaz,1 María Soledad Vasquez-Murrieta, 1 Ann M. Hirsch,2,3 Rene De Mot,4 Maarten G. K. Ghequire,4 J. Antonio Ibarra1,* and Paulina Estrada-de los Santos1,* Abstract The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain- specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected.
    [Show full text]
  • Impacts of Paraburkholderia Phytofirmans Strain Psjn on Tomato
    Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature Alaa Issa, Qassim Esmaeel, Lisa Sanchez, Barbara Courteaux, Jean-Francois Guise, Yves Gibon, Patricia Ballias, Christophe Clément, Cedric Jacquard, Nathalie Vaillant-Gaveau, et al. To cite this version: Alaa Issa, Qassim Esmaeel, Lisa Sanchez, Barbara Courteaux, Jean-Francois Guise, et al.. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, Frontiers, 2018, 9, pp.1397. 10.3389/fpls.2018.01397. hal- 02620887 HAL Id: hal-02620887 https://hal.inrae.fr/hal-02620887 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fpls-09-01397 October 16, 2018 Time: 14:57 # 1 ORIGINAL RESEARCH published: 18 October 2018 doi: 10.3389/fpls.2018.01397 Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature Alaa
    [Show full text]
  • Molecular Signatures and Phylogenomic Analysis Of
    ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp.
    [Show full text]
  • Molecular Study of the Burkholderia Cenocepacia Division Cell Wall Operon and Ftsz Interactome As Targets for New Drugs
    Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Supervised by Prof. Edda De Rossi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Cover image: representation of the Escherichia coli division machinery. Created by Ornella Trespidi A tutta la mia famiglia e in particolare a Diletta Table of contents Abstract ..................................................................................................... 1 Abbreviations ............................................................................................ 3 1. Introduction ........................................................................................... 5 1.1 Cystic fibrosis 5 1.1.1 CFTR defects in CF 5 1.1.2 Pathophysiology of CF 7 1.1.3 CFTR modulator therapies 11 1.2 CF-associated lung infections 12 1.2.1 Pseudomonas aeruginosa 13 1.2.2 Staphylococcus aureus 14 1.2.3 Stenotrophomonas maltophilia 15 1.2.4 Achromobacter xylosoxidans 16 1.2.5 Non-tuberculous mycobacteria 17 1.3 The genus Burkholderia 18 1.3.1 Burkholderia cepacia complex 20 1.3.2 Bcc species as CF pathogens 22 1.4 Burkholderia cenocepacia 23 1.4.1 B. cenocepacia epidemiology 23 1.4.2 B. cenocepacia genome 25 1.4.3 B. cenocepacia pathogenicity and virulence factors 26 1.4.3.1 Quorum sensing 29 1.4.3.2 Biofilm 32 1.4.4 B.
    [Show full text]