Decontamination of Indoor and Outdoor Materials with Aqueous Chlorine Dioxide Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Decontamination of Indoor and Outdoor Materials with Aqueous Chlorine Dioxide Solutions EPA 600/R-12/516 | May 2012 | www.epa.gov/ord Decontamination of Indoor and Outdoor Materials with Aqueous Chlorine Dioxide Solutions Office of Research and Development National Homeland Security Research Center EPA/600/R/12/516 May 2012 Decontamination of Indoor and Outdoor Materials with Aqueous Chlorine Dioxide Solutions U.S. Environmental Protection Agency Research Triangle Park, NC 27711 ii Disclaimer The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development’s (ORD) National Homeland Security Research Center (NHSRC), funded, directed and managed this work through Contract Number EP-C-10-001 with Battelle. This report has been peer and administratively reviewed and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use of a specific product. Questions concerning this document or its application should be addressed to: Joseph Wood National Homeland Security Research Center Office of Research and Development U.S. Environmental Protection Agency Mail Code E343-06 Research Triangle Park, NC 27711 919-541-5029 iii Foreword Following the events of September 11, 2001, addressing the critical needs related to homeland security became a clear requirement with respect to EPA’s mission to protect human health and the environment. Presidential Directives further emphasized EPA as the primary federal agency responsible for the country’s water supplies and for decontamination following a chemical, biological, and/or radiological (CBR) attack. To support EPA’s mission to assist in and lead response and recovery activities associated with CBR incidents of national significance, the National Homeland Security Research Center (NHSRC) was established to conduct research and deliver products that improve the capability of the Agency and other federal, state, and local agencies to carry out their homeland security responsibilities. One goal of NHSRC’s research is to provide information on decontamination methods and technologies that can be used in the response and recovery efforts resulting from a CBR release over a wide area. The complexity and heterogeneity of the wide-area decontamination challenge necessitates the understanding of the effectiveness of a range of decontamination options. In addition to effective fumigation approaches, rapidly deployable or readily available surface decontamination approaches have also been recognized as a tool to enhance the capability to respond to and recover from such an intentional CBR dispersion. Through working with ORD’s program office partners (EPA’s Office of Emergency Management and Office of Chemical Safety and Pollution Prevention) and Regional on-scene coordinators, NHSRC is attempting to understand and develop useful decontamination procedures for wide-area remediation. This report documents the results of a comprehensive laboratory study designed to better understand and maximize the effectiveness of aqueous solutions of chlorine dioxide (ClO2) to decontaminate materials contaminated with Bacillus anthracis spores. These results, coupled with additional information in separate NHSRC publications (available at www.epa.gov/nhsrc) can be used to determine whether a particular decontamination technology can be effective in a given scenario. NHSRC has made this publication available to the response community to prepare for and recover from disasters involving biological contamination. This research is intended to move EPA one step closer to achieving its homeland security goals and its overall mission of protecting human health and the environment while providing sustainable solutions to our environmental problems. Jonathan Herrmann, Director National Homeland Security Research Center iv Acknowledgments Contributions of the following individuals and organization to this report are gratefully acknowledged: United States Environmental Protection Agency (EPA) Office of Research and Development, National Homeland Security Research Center Eletha Brady-Roberts (Quality Assurance) Lukas Oudejans (peer review) United States Environmental Protection Agency (EPA) Office of Emergency Management, National Decontamination Team Michael Ottlinger (peer review) United States Environmental Protection Agency (EPA) Office of Research and Development, National Risk Management Research Laboratory Timothy Dean (peer review) Battelle v Executive Summary The U.S. Environmental Protection Agency quantified in terms of log reduction, based (EPA), Office of Research and Development on the difference in the number of bacterial is striving to protect human health and the spores recovered from the positive controls environment from adverse impacts resulting and test coupons. Efficacy tests were from acts of terror by investigating the conducted with increasing levels of ClO2 effectiveness and applicability of (1,500 to 4,000 parts per million (ppm)), technologies for homeland security (HS)- contact times (one or two hours) and/or related applications. The purpose of this number of spray applications (two to four investigation was to determine the total spray applications), in order to decontamination efficacy of aqueous maximize the decontamination efficacy for chlorine dioxide (ClO2) solutions in each material (i.e., to achieve a target log inactivating Bacillus anthracis (causative reduction of at least 6.0). In addition to agent for anthrax) spores, as a function of efficacy, the impact of the decontamination material and decontamination parameters process on the materials was visually (concentration, contact time, number of observed and reported. spray applications). The objective of this study was to provide an understanding of the Summary of Results performance of the aqueous ClO2 The aqueous ClO2 decontamination decontamination technology to guide its use technology provided complete inactivation and implementation in HS applications. In of B. anthracis spores on galvanized metal, the assessment of options for decorative laminate, and glass using a 3,000 decontamination following intentional ppm, three-spray, one-hour contact time release of B. anthracis, it is important to treatment. Complete decontamination was know whether and to what extent such not achieved for any of the other materials factors can impact the decontamination for any of the ClO2 decontamination efficacy. conditions tested. The highest average log reductions achieved for B. anthracis on This investigation focused on treated wood, industrial carpet, and decontamination of both indoor and outdoor unpainted concrete were 2.64, 3.40, and materials, including industrial carpet, treated 2.50, respectively. The aqueous ClO2 wood, unpainted concrete, two types of soil decontaminant was the least effective on the material (topsoil and Arizona Test Dust soil materials (topsoil and AZTD), with [AZTD]), decorative laminate, galvanized nearly all log reduction results less than 1.0 metal, and glass. Decontamination efficacy for the six ClO2 conditions tested. Overall, tests were conducted with spores of Bacillus the results show that with robust enough anthracis or Bacillus subtilis, the latter conditions (i.e., 3,000 – 4,000 ppm ClO2, organism included to assess its potential as a one-two hour contact time, and two – four surrogate for future studies related to B. spray applications), the aqueous ClO2 spray anthracis. Decontamination efficacy was technology may be an effective vi decontaminant for some nonporous materials such as glass, galvanized metal, and laminate. However, aqueous ClO2 was found to be largely ineffective on porous materials (e.g., wood, carpet, soils, and concrete), even under the most robust conditions tested. With regard to comparing the decontamination efficacies of B. anthracis and B. subtilis, there were no test results in which B. subtilis was inactivated to a significantly greater degree than B. anthracis. Additionally, no visible damage was observed on any test materials for any of the decontamination conditions tested. vii Contents Foreword ................................................................................................................................................... iv Acknowledgments...................................................................................................................................... v Executive Summary .................................................................................................................................. vi Tables ........................................................................................................................................................ x Figures..................................................................................................................................................... xiii Abbreviations/Acronyms ........................................................................................................................ xiv 1.0 Introduction ........................................................................................................................................ 1 2.0 Preparation of ClO2 Solutions and Test Matrix .................................................................................. 2 2.1 Preparation of Aqueous ClO2 Solutions .................................................................................. 2 2.2 Test Matrix ..............................................................................................................................
Recommended publications
  • United States Patent 19 11 3,904.425 Young Et Al
    United States Patent 19 11 3,904.425 Young et al. (45) Sept. 9, 1975 54) ABSORPTIVE GLASS Primary Examiner-Harvey E. Behrend 75 Inventors: Robert W. Young, Woodstock, Attorney, Agent, or Firm-William C. Nealon; H. R. Conn.; Robert E. Graf, Southbridge, Berkenstock, Jr. Mass. W EXEMPLARY CLAIM 73) Assignee: American Optical Corporation, 1. A glass material having a calculated oxide composi Southbridge, Mass. tion comprising 22 Filed: June 12, 1964 21 Appl. No.: 374,811 Percent by Weight Silicon Dioxidc (SiO) 5.9 Sodium Oxide (NaO) 6.5 (52) U.S. Cl...................................... 106/52; 106/50 Potassium Oxide (KO) 6.8 (51 l Int. Cl........................................... CO3C 13/00 Calcium Oxide (CaO) 6.5 58) Field of Search................................. 106/50, 52 Antimony Trioxide (SbO) 0.4 Aluminum Oxide (AO) 4. Zinc Oxide (ZnO) 2.2 56) References Cited Titanium Dioxidc (TiO) 0.4 Manganese Dioxide (MnO) 23.4 UNITED STATES PATENTS Chromium Oxide (CrO) O.S 2,676,09 4/1954 Barnes ct al.......................... 106752 Tct O).() 2,776,900 l/1957 Duncan et al........................ 106/52 2,898,219 8/1959 Duncan ct al........................ 106/52 2,902,377 9, 1959 Duncan............ ... 106/52 a 100 micron thickness of said glass material having 3,146,2O 8/1964 Upton et al.... ... 106/52 an optical density greater than 0.25 at least for light 3,20386 8/1965 Bull et al.............................. 1 O6/52 from 0.4 to 0.6 microns wavelength. FOREIGN PATENTS OR APPLICATIONS 6 4,357 21 1961 Canada................................. 106/52 6 Claims, No Drawings 3,904,425 2 ABSORPTIVE GLASS als should have optical densities at least as high as 0.25 The field of this invention is that of glass composi in sample thickness as small as 100 microns at least for tions and the invention relates more particularly to light of wavelengths between 0.4 and 0.6 microns.
    [Show full text]
  • Crops 2019 Sunset Reviews: §§205.601, 205.602 (Pdf)
    Sunset 2019 Meeting 2 - Review Crops Substances November 2017 Note: With the exception of biodegradable biobased mulch film, the materials included in this list are undergoing early sunset review as part of November 18, 2016 NOSB recommendation on efficient workload re-organization. As part of the National List sunset review process, the NOSB Crops Subcommittee has evaluated the need for the continued allowance for or prohibition of the following substances for use in organic crop production. Reference: 7 CFR 205.601 Synthetic substances allowed for use in organic crop production. Chlorine materials: calcium hypochlorite, chlorine dioxide, sodium hypochlorite Herbicides, soap-based Biodegradable biobased mulch film Boric acid Sticky traps/barriers Coppers, fixed Copper sulfate Humic acids Micronutrients: soluble boron products Micronutrients: sulfates, carbonates, oxides, or silicates of zinc, copper, iron, manganese, molybdenum, selenium, and cobalt Vitamins B1, C, E 205.602 Nonsynthetic substances prohibited for use in organic crop production Lead salts Tobacco dust (nicotine sulfate) NOSB October 2017 proposals and discussion documents 17/175 Chlorine materials - Calcium Hypochlorite Reference: 205.601(a) - As algicide, disinfectants, and sanitizer, including irrigation system cleaning systems. (2) Chlorine materials -For pre-harvest use, residual chlorine levels in the water in direct crop contact or as water from cleaning irrigation systems applied to soil must not exceed the maximum residual disinfectant limit under the Safe Drinking
    [Show full text]
  • BALANCE I: IONIZE (Dissociate) D: DELETE SPECTATOR IONS D: DECOMPOSE Y: YES – YOU DID IT!!
    PREDICTING REACTIONS Chapter One | 1 Chapter 1 AP PREDICTING REACTIONS1 NOTE: we will cover this chapter throughout the year. A. Points 15 % of Free Response or 7.5% of final grade Each rxn worth 5 pts for a total of 15 pts possible. Three points for the unbalanced net ionic equation (total nine points). 1 pt reactants, 2 pts products One point for the balanced equation (I am assuming that if the net ionic is wrong, but the equation is balanced correctly, i.e. “internally consistence” then the students will get this point). One point for answering a question about the reaction. Possibilities include: indications of chemical reaction oxidizing agent oxidation number color of solid product general chemistry interest simple stoichiometry Points are deducted for including incorrect species, omitting species or including spectator ions. You don’t need to include states, but I like to include (s) and (g) so I won’t be tempted to dissociate incorrectly! B. Instructions For each of the following three reactions, in part (i) write a BALANCED equation and in part (ii) answer the question about the reaction. In part (i), coefficients should be in the lowest whole numbers. In all cases, a reaction occurs. Assume that solutions are aqueous unless otherwise indicated. Represent substances in solution as ions if the substances are extensively ionized. Omit formulas for any ions or molecules that are unchanged by the reaction. Example: (i) A strip of magnesium is added to a solution of silver nitrate. (ii) Which substance is the oxidizing agent? + 2+ (i) Mg + 2 Ag Mg + 2 Ag (ii) The Ag+ is the oxidizing agent.
    [Show full text]
  • United States Patent Office Patented Feb
    2,701,781 United States Patent Office Patented Feb. 8, 1955 2 pound in the presence of an excess of water and allow ing the two to combine. The chlorine dioxide can be 2,701,781 generated in situ or externally of the solution or suspen AQUEOUS CHLORINE DIOXIDE ANTISEPTIC sion of the boron compound, as will become more clear COMPOSITIONS AND PRODUCTIONTHEREOF from the discussion given below. Moises L. de Guevara, Mexico City, Mexico, assignor, by The following examples, in which all parts indicated are mesne assignments, of fifty-seven and one-half per cent by Weight, of actual operations in accordance with this to Charles Wan Buren, Washington, D. C., and forty invention, are given in order to provide an easy com two and one-half per cent to Pearlman, Baldridge, prehension of the type of materials and procedures with Lyons and Browning, Washington, D. C. which the invention is concerned. Example I No Drawing. Application December 30, 1949, An antiseptic composition is produced from the follow Serial No. 136,149 ing ingredients: 9 Claims. (C. 167-17) 15 Parts Sodium tetraborate---------------------------- 20 This invention relates to new antiseptic compositions Boric acid------------------------------------ 20 having great antiseptic strength. It is also concerned Sodium perborate----------------------------- 3 with methods for the production of these new products. Potassium chlorate---------------------------- 2 Innumerable materials have been tested and experi 20 Sulfuric acid---------------------------------- 1. mented with in order to uncover successful antiseptics Hydrochloric acid----------------------------- 1. for general application. Notwithstanding the large Para amino benzoic acid------------------------ .1 amount of investigation made in this field, a really Sat Pye ---------------------------------------- 0.1 isfactory, universal antiseptic has not been provided here Water in an amount to make 1000 parts.
    [Show full text]
  • Chemical Formula of Binary Ionic Compounds – Sheet 1 the Combining Power Or Valency of Silver Is Always 1
    Chemical Formula of Binary Ionic Compounds – Sheet 1 The combining power or valency of silver is always 1. All other transition metals are 2 unless otherwise indicated. No. Binary compound Formula No. Binary compound Formula 1 potassium fluoride 26 calcium sulfide 2 calcium chloride 27 lithium bromide 3 barium bromide 28 nickel sulfide 4 silver sulfide 29 zinc phosphide 5 aluminium iodide 30 barium iodide 6 potassium iodide 31 caesium chloride 7 lead(IV) oxide 32 copper bromide 8 zinc nitride 33 sodium nitride 9 silver iodide 34 silver chloride 10 barium fluoride 35 sodium hydride 11 lead(II) iodide 36 potassium nitride 12 silver fluoride 37 cobalt chloride 13 sodium sulfide 38 magnesium sulfide 14 sodium bromide 39 potassium chloride 15 calcium oxide 40 calcium bromide 16 zinc fluoride 41 iron(III) oxide 17 strontium phosphide 42 aluminium fluoride 18 barium sulfide 43 magnesium bromide 19 aluminium oxide 44 iron(III) chloride 20 aluminium chloride 45 barium nitride 21 aluminium sulfide 46 sodium fluoride 22 lead(II) oxide 47 lithium fluoride 23 barium chloride 48 lithium iodide 24 copper chloride 49 lithium hydride 25 barium phosphide 50 potassium oxide “Aluminum” and “cesium” are commonly used alternative spellings for "aluminium" and "caesium that are used in the US. May be freely copied for educational use. ©www.chemicalformula.org Chemical Formula of Binary Ionic Compounds – Sheet 2 The combining power or valency of silver is always 1. All other transition metals are 2 unless otherwise indicated. No. Binary compound Formula No.
    [Show full text]
  • Chlorine Dioxide
    Common Name: CHLORINE DIOXIDE CAS Number: 10049-04-4 DOT Number: NA 9191 (Hydrate, frozen) DOT Hazard Class: FORBIDDEN (Not Hydrate) RTK Substance number: 0368 5.1 (Oxidizer) Date: June 1998 Revision: December 2005 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY * Chlorine Dioxide can affect you when breathed in. * Exposure to hazardous substances should be routinely * Contact can irritate the skin and eyes causing watery eyes evaluated. This may include collecting personal and area and seeing halos around the lights. air samples. You can obtain copies of sampling results * Breathing Chlorine Dioxide can irritate the nose and from your employer. You have a legal right to this throat causing coughing and wheezing. information under the OSHA Access to Employee * Breathing Chlorine Dioxide can irritate the lungs causing Exposure and Medical Records Standard (29 CFR coughing and/or shortness of breath. Higher exposures 1910.1020). can cause a build-up of fluid in the lungs (pulmonary * If you think you are experiencing any work-related health edema), a medical emergency, with severe shortness of problems, see a doctor trained to recognize occupational breath. diseases. Take this Fact Sheet with you. * Chlorine Dioxide is a HIGHLY FLAMMABLE and * ODOR THRESHOLD = 0.1 ppm. REACTIVE gas and a DANGEROUS FIRE and * The range of accepted odor threshold values is quite EXPLOSION HAZARD. broad. Caution should be used in relying on odor alone as * DOT regulations FORBID the transport of Chlorine a warning of potentially hazardous exposures. Dioxide in Not Hydrate form. WORKPLACE EXPOSURE LIMITS IDENTIFICATION OSHA: The legal airborne permissible exposure limit Chlorine Dioxide is a yellow to red gas with an irritating odor (PEL) is 0.1 ppm averaged over an 8-hour similar to Chlorine.
    [Show full text]
  • Toxicological Profile for Chlorine Dioxide and Chlorite
    TOXICOLOGICAL PROFILE FOR CHLORINE DIOXIDE AND CHLORITE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2004 CHLORINE DIOXIDE AND CHLORITE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. CHLORINE DIOXIDE AND CHLORITE iii UPDATE STATEMENT Toxicological Profile for Chlorine Dioxide and Chlorite, Draft for Public Comment was released in September 2002. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia 30333 CHLORINE DIOXIDE AND CHLORITE vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide
    ® Basic Chemicals Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide Introduction temperature of the cooling water. From the heat Chlorine dioxide, which has a long history of use exchanger the hot cooling water goes to the top in drinking water disinfection, is increasing its of the cooling tower, shown in Figure 2, it is share of the cooling tower microbiological sprayed over the fill and slowly falls to the sump. control market. In large measure, this is the The fan at the top of the tower induces a draft, result of chlorine dioxide's benefits when which causes water evaporation and cooling. compared to other cooling tower biocides: it acts From the sump cool water is pumped back to rapidly; is less sensitive to cooling water the heat exchanger. contamination and pH changes; has few side reactions, and is environmentally friendly. This Cooling System Treatment brochure covers the theory and practical Treatment of cooling systems has two basic application of chlorine dioxide to cooling towers. objectives: to protect and extend the life of the cooling system and to insure good heat transfer and removal. Any fouling of the heat exchanger surface by scale, debris, or microbiological growth decreases the heat transfer efficiency. Corrosion destroys heat exchanger surfaces and causes leaks that result in mixing of the cooling water and the process fluid. Consequently there are three components to a cooling water treatment program: 1) microbiological control, 2) scale and deposit control and 3) corrosion control. The treatment used for each component Figure 1. Heat Exchanger must be selected based upon its performance and its compatibility with the other treatment Cooling Systems components.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,278,867 LEAD-FREE GLAZE of LOW MATURNG TEMPERATURE for USE in DECORATING CERAMCWARE Alden J
    Patented Apr. 7, 1942 2,278,867 UNITED STATES PATENT OFFICE 2,278,867 LEAD-FREE GLAZE OF LOW MATURNG TEMPERATURE FOR USE IN DECORATING CERAMCWARE Alden J. Deyrup, Elizabeth, N.J., assignor to E. ... " du Pont de Nemours & Company, Wilmington, Del, a corporation of Delaware No Drawing. Application May 1, 1940, Seria No. 332,732 9 Claims. (C. 106-48) This invention relates to certain improved lead temperature of glaze firing, being utilized. The free glazes or fluxes of the type suitable for use temperature employed in the overglazing fire to in art-glazing or Overglazing ceramic ware. More mature the overglaze is usually 700 to 800' C., particularly, this invention relates to certain new which is of course considérably.lower than the and improved flux compositions free from leadi 5 temperature range in which the glazes used to Oxide which, when used for the artglazing or coat the bisque are fired. At this overglaze fir Overglazing of chinaware and pottery, are capa ing temperature the colored decorative coating ble of melting at fairly low maturing tempera matures and vitrifles, and the ware is thus coat tures to a superior decorative coating of high ed with a colored decorative surface having a resistance to both the action of chemical agents 10 high degree of glossiness. such as acids and alkalies, and to mechanical Bisque ware is sometimes decorated by plac abrasion. ing on the surface of the ware, without prelimi In the manufacture of china and pottery a narily coating the surface of the bisque with a clay mixture is customarily formed into the de vitrified glaze, a mixture of pigment and low sired shape and then fired at a high tempera 15 melting flux which can be matured to a good ture, one within the range 1250 to 1400° C.
    [Show full text]
  • REACH - Registration, Evaluation, Authorisation and Restriction of Chemical Substances
    REACH - Registration, Evaluation, Authorisation and Restriction of Chemical Substances TERRITORY European Union RESTRICTION SUBJECT Human Health and Environment Protection against adverse effects of chemical substances The European Commission elaborated a Directive (EC 1907/2006) known as REACH with the aim to ensure Human Health and Environment Protection against adverse effects of chemical substances. The Directive imposes - to all companies conducting business with chemical substances - to adopt compulsorily “a special chemical substances work regime”. (REACH is valid from 1st of July 2007.) Producers, importers and follow-up users of chemical substances and/or substances contained in preparations and in items must, in compliance with the Directive, ask for their registration at the European Chemical Agency as of 1st of June 2008. The obligation to register in relation with chemical composition is mainly related to chemical substances and preparations made of them, but not according to the article 7, the paragraph 1 of the REACH Directive to final products, i.e. items which can be considered – under standard or reasonable foreseeable conditions of use – as completely safe. Preciosa does not supply either chemical substances or chemical preparations or mixtures on the market. The products that we supply are final products that meet the above mentioned requirements. This means that they are not subject to the REACH registration. Preciosa guarantees to the customer that all products of Preciosa are in conformity with requirements specified in COMMISSION REGULATION (EU) No 217/2016 of 16 February 2016 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annex XVII.
    [Show full text]
  • GRAS Notification for Chlorine Dioxide and Withdrawal of FAP 2266; Resonant Biosciences, Inc.; Our File No
    I® ORIGINAL 1001 G Street, N.W. Suite 500 West Washington, D.C. 20001 tel. 202.434.4100 fax 202.434.4646 Writer's Direct Access Martha E. Marrapese (202) 434-4 123 November 11. 2010 [email protected] Via Federal Express CONTAINS CONFIDENTIAL BUSINESS INFORMATION Food and Drug Administration Division of Animal Feeds (HFV-224) Office of Surveillance and Compliance Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855 Re: GRAS Notification for Chlorine Dioxide and Withdrawal of FAP 2266; Resonant Biosciences, Inc.; Our File No. RE14070 Dear Sir or Madam: The purpose of this letter is to request to participate in the pilot program for a Generally Recognized as safe (GRAS) determination for the safe use of chlorine dioxide generated by the notifier's PureMash* system in the production of food grade and non-food grade ethanol and distillers grains for animal feed use (food producing livestock). 75 Fed. Reg. 31800 (June 4, 2010). In connection with this GRAS notification, Resonant Biosciences, Inc. (RBS or Notifier) is formally withdrawing Food Additive Petition (FAP) 2266. The Notifier previously met with your office to discuss residual testing and a submission plan for this product. The potential eligibility for clearance under the Federal Food, Drug, and Cosmetic Act (FFDCA) as GRAS was raised at that time. We trust that our prior discussions fully satisfy the guidance in the Federal Register that "FDA strongly encourages potential participants in the animal food pilot program to contact the Division of Animal Feeds" prior to submitting notices. 75 Fed. Reg. at 31802. We look forward to confirmation that this submission has been accepted and is complete.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 24-Nov-2010 Revision Date 17-Jun-2021 Revision Number 4 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Potassium tetraborate tetrahydrate Cat No. : 39435 Synonyms Potassium biborate tetrahydrate CAS-No 12045-78-2 Molecular Formula B4 K2 O7 . 4 H2 O Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met Health hazards ______________________________________________________________________________________________ ALFAA39435 Page 1 / 10 SAFETY DATA SHEET Potassium tetraborate tetrahydrate Revision Date 17-Jun-2021 ______________________________________________________________________________________________ Reproductive Toxicity Category 2 (H361d) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2. Label elements Signal Word Warning Hazard Statements H361d - Suspected of damaging the unborn child Precautionary Statements P201 - Obtain special instructions before use P280 - Wear protective gloves/protective clothing/eye protection/face protection P308 + P313 - IF exposed or concerned: Get medical advice/attention Additional EU labelling Restricted to professional users 2.3.
    [Show full text]