Promiscuous Restriction Is a Cellular Defense Strategy That Confers Fitness

Total Page:16

File Type:pdf, Size:1020Kb

Promiscuous Restriction Is a Cellular Defense Strategy That Confers Fitness Promiscuous restriction is a cellular defense strategy PNAS PLUS that confers fitness advantage to bacteria Kommireddy Vasua, Easa Nagamalleswaria, and Valakunja Nagarajaa,b,1 aDepartment of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; and bJawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India Edited by Werner Arber, der Universitat Basel, Basel, Switzerland, and approved March 20, 2012 (received for review November 22, 2011) Most bacterial genomes harbor restriction–modification systems, ognition and cofactor utilization, whereas the cognate MTase is encoding a REase and its cognate MTase. On attack by a foreign very site-specific (14). In addition to its recognition sequence, DNA, the REase recognizes it as nonself and subjects it to restric- GGTACC, the enzyme binds and cleaves a number of noncanoni- tion. Should REases be highly specific for targeting the invading cal sequences (i.e., TGTACC, GTTACC, GATACC, GGAACC, foreign DNA? It is often considered to be the case. However, when GGTCCC, GGTATC, GGTACG, GGTACT), with the binding bacteria harboring a promiscuous or high-fidelity variant of the affinity ranging from 8 to 35 nM (14, 15). Accordingly, many of fi REase were challenged with bacteriophages, tness was maximal these sites are cleaved efficiently with kcat values varying from 0.06 − − under conditions of catalytic promiscuity. We also delineate pos- to 0.15 min 1 vs. 4.3 min 1 for canonical sites (15). The promis- sible mechanisms by which the REase recognizes the chromosome cuous activity of the enzyme is directed by a number of cofactors. as self at the noncanonical sites, thereby preventing lethal dsDNA In the presence of the physiological levels of Mg2+, the most breaks. This study provides a fundamental understanding of how abundant cofactor present in the cell (16) and typically required bacteria exploit an existing defense system to gain fitness advan- for the activity of REases, R.KpnI discriminates poorly between tage during a host–parasite coevolutionary “arms race.” the canonical and noncanonical sequences, indicating that the promiscuity is an intrinsic property of the enzyme (15). It is in- evolution | KpnI | promiscuous activity | DNA cleavage | triguing why promiscuity is manifested and what would be its bi- genome protection ological significance for the organism. Is it an evolutionary event that remained vestigial, or was it retained with a purpose? The MICROBIOLOGY olecular recognition between enzymes and their substrates present study examines the in vivo manifestation of promiscuity Mand/or the cofactors govern physiological functions. Spec- and the conditions that drive it. We provide evidence for the se- ificity in substrate recognition is considered crucial, whereas lective advantage for bacteria in retention of the promiscuous promiscuity is often associated with suboptimal catalytic prop- activity because it confers additional protection against the in- erties. Typically, active site residues are involved during pro- vading genomes. Targeting the incoming genetic elements at the miscuous catalytic activity, and the mechanism of catalysis used is noncanonical sites counters the two common antirestriction similar, despite flexibility in substrate occupancy (1). It has long strategies, namely, modification of phage genome and decrease in been known that many enzymes exhibit flexibility in substrate R-M recognition sites, and highlights a winning situation for recognition (2, 3). The high specificity, however, is considered bacteria in the evolutionary “arms race” between them and a cornerstone of enzyme catalysis, and attempts have often been their parasites. made to increase the fidelity in vitro by either directed evolution or site-directed mutagenesis (1, 4–6). Although promiscuity is Results thought to play a role in divergence of enzyme function (7), re- In Vivo Promiscuous Activity Confers Better Protection. Given the tention of broad specificity in nature, as opposed to the high robust in vitro promiscuous activity of R.KpnI beyond a con- 2+ specificity for many enzymes, continues to be a paradox. centration of 1 mM Mg (17), we considered its potential to Restriction–modification (R-M) systems are one of the largest cleave noncanonical DNA sequences in vivo. The total in- 2+ groups of enzymes that exhibit a high degree of sequence spec- tracellular Mg concentration could vary from 5–10 mM, with ificity for their target sequences. The components of the R-M the free intracellular concentration reaching up to 2 mM (16, systems, namely, REase and MTase, show wide diversity vis-à-vis 18), which is sufficient to elicit promiscuous cleavage. The REase their recognition patterns, active site architecture, and reaction isolated from Klebsiella pneumoniae, which harbors the KpnI R- mechanisms (8). The REases recognize and cleave specific M system, was tested for its activity on noncanonical DNA dsDNA sequences that are extraneous, whereas the MTase ac- substrates. R.KpnI from the native source exhibited biochemical tivity transfers a methyl group to the same DNA sequence within properties similar to those of the enzyme overexpressed in the host’s genome to allow discrimination between self and Escherichia coli. Notably, promiscuous DNA cleavage was ob- nonself DNA. R-M systems thus serve as primitive “innate” served (Fig. 1A), indicating the inherent promiscuous nature of immune systems that provide 102-to108-fold protection for the the REase. host cell against invading bacteriophages and other genetic ele- To investigate a potential role for in vivo promiscuous activity, ments (9, 10). The innateness is attributed to the high specificity we took advantage of a point mutant of R.KpnI, D163I, which of the REases, which cleave the foreign DNA at the canonical exhibits high-fidelity (HF) DNA cleavage (17). The HF variant did sites several orders of magnitude more readily than at the non- canonical sequences. The immaculate specificity achieved by REases has been a subject of extensive study using biochemical, Author contributions: K.V. and V.N. designed research; K.V. and E.N. performed research; thermodynamic, and structural approaches (8, 11–13). Physio- K.V. and V.N. analyzed data; and V.N. wrote the paper. logically, the exquisite specificity is considered an important The authors declare no conflict of interest. virtue of these enzymes to target the invading genomes better. This article is a PNAS Direct Submission. Studies carried out with R.KpnI, a type II REase, opened up 1To whom correspondence should be addressed. E-mail: [email protected]. a different perspective on this prevailing theme, because the en- See Author Summary on page 7608 (volume 109, number 20). zyme exhibits highly promiscuous cleavage under certain conditions This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. (14). The REase exhibits remarkable versatility in substrate rec- 1073/pnas.1119226109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1119226109 PNAS | Published online April 16, 2012 | E1287–E1293 Downloaded by guest on October 2, 2021 -GGTACC- -GaTACC- 15 A B GGTACC GaTACC WT WT C 10 HF HF 20 mer 12 mer 5 Product (nM) Product 0 50 100 150 200 Time (sec) C PFU (WT) =1 Comparable in vivo Similar PFU (HF) activity protection Better PFU (WT) <1 WT exhibits in vivo protection PFU (HF) promiscuous activity by WT D 101 100 Strain PFU/ml 10-1 Vector 5.2 x109 10-2 WT 4.2 x105 -3 10 HF 6.0 x107 10-4 H149A 5.4 x109 10-5 Relative plaque forming units T F A H ctor W Ve H149 Fig. 1. Promiscuous activity of KpnI REase confers better protection. (A) Oligonucleotides (10 nM, 5′ end-labeled) containing a canonical sequence (-GGTACC-) or one of the most preferred noncanonical sequences (-GaTACC-) were incubated with Mg2+ and different dilutions of cell-free extracts of K. pneumoniae strain OK8 for 30 min at 37 °C and analyzed on an 8 M urea – 12% (wt/vol) polyacrylamide gel. The enzyme-mediated DNA cleavage of the 20-mer substrate generates a 12-mer end-labeled product. Lane C is substrate DNA with no enzyme. (B) Rates of DNA cleavage by WT and HF enzymes were assayed in the presence of canonical and noncanonical substrates. Reactions contained 1 nM (for canonical DNA cleavage) or 15 nM (for noncanonical DNA cleavage) of the enzyme and 100 nM of substrate in 10 mM Tris·HCl (pH 7.4). The reactions were initiated by the addition of 2 mM Mg2+ and incubation at 37 °C for different time intervals. The plot depicts the product formed vs. time. Data are presented as mean ± SEM. (C) Experimental design of the phage titration assay. Plaque-forming units (PFU) with cells harboring WT and HF were compared. A similar PFU count on both of the strains would indicate a comparable restriction by the WT and HF variants. Alternatively, a lower PFU count on WT-harboring cells compared with the HF variant would indicate greater protection against phages. (D)P1vir phage restriction by R.KpnI and its variants. The plaque-forming units of P1vir phage on cells harboring the WT, the HF variant, or the catalysis-deficient mutant (H149A) relative to cells containing empty vector are shown. (Left) Values from two independent experiments conducted in quadruplicate are plotted. (Right) Representative titer values are shown. not show any promiscuous behavior even at high enzyme or Mg2+ strategies to evade restriction by host REases. One of these strat- concentrations but exhibited a cleavage rate comparable to the egies is to decrease effective REase recognition sites in the genome WT enzyme at the canonical sequences (Fig. 1B and Fig. S1). either by accumulation of point mutations or by acquisition of DNA Because the primary function of R-M systems is to restrict the modification genes (10, 20, 21). Because phage restriction efficiency xenogeneic DNA and protect the host from potent invading life of a REase is directly proportional to the number of its recognition forms, such as bacteriophages (19, 20), phage titer analysis gives an sites in the genome, these antirestriction strategies would allow in vivo measurement of the REase activity (Fig.
Recommended publications
  • Molecular Cloning of DNA Fragments Produced by Restriction
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 5, pp. 1537-1541, May 1976 Biochemistry Molecular cloning of DNA fragments produced by restriction endonucleases SailI and BamI (DNA joining/plasmid/insertional inactivation of genes/Drosophila melanogaster) DEAN H. HAMER AND CHARLES A. THOMAS, JR. Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Communicated by Bernard D. Dats, February 25,1976 ABSTRACT The highly specific restriction endonucleases cleaves various DNAs about once every 8 kb (kilobases), as SalI and BamI produce DNA fragments with complementary, compared to about once every 4 kb for EcoRI (16, 18). The cohesive termini that can be covalently joined by DNA ligase. resulting fragments have cohesive termini, and can be joined The Escherichia coli kanamycin resistance factor pML21 has to one another in head-to-tail, head-to-head, and one Sall site, at which DNA can be inserted without interfering probably with the expression of drug resistance or replication of the tail-to-tail orientation. Another highly specific restriction en- plasmid. A more convenient cloning vehicle can be made with donuclease that produces cohesive termini is BamI, from Ba- the tetracycline resistance factor pSC101, since insertion of cillus amyloliqefaciens H (G. Wilson and F. Young, personal DNA either at its single site for Sall or at that for BamI inacti- communication). We have shown that it cleaves D. melano- vates plasmid-specified drug resistance but not replication. To gaster DNA about once every 6 kb. This report describes the take advantage of this insertional inactivation, pSC101 was construction and verification of plasmid vehicles that allow one joined to a ColEl-ampicillin resistance plasmid having no Sall site, and to a ColEl-kanamycin resistance plasmid having no to clone and amplify potentially any DNA fragment produced BamI site.
    [Show full text]
  • Mutation Detection & Analysis
    PRO55 G-Biosciences ♦ 1-800-628-7730 ♦ 1-314-991-6034 ♦ [email protected] A Geno Technology, Inc. (USA) brand name Mutation Detection & Analysis Teacher’s Guidebook (Cat. # BE-314) think proteins! think G-Biosciences www.GBiosciences.com MATERIALS INCLUDED WITH THE KIT ................................................................................ 3 CHECKLIST .......................................................................................................................... 3 SPECIAL HANDLING INSTRUCTIONS ................................................................................... 3 ADDITIONAL EQUIPMENT REQUIRED ................................................................................ 3 TIME REQUIRED ................................................................................................................. 3 OBJECTIVES ........................................................................................................................ 4 BACKGROUND ................................................................................................................... 4 POLYMERASE CHAIN REACTION .................................................................................... 5 RESTRICTION ENZYMES ................................................................................................. 8 TEACHER’S PRE EXPERIMENT SET UP .............................................................................. 11 PREPARE PCR AND RESTRICTION DIGESTION REAGENTS ............................................ 11
    [Show full text]
  • How to Clone Ref V1-2
    A primer on cloning in E. coli Michael Nonet Department of Neuroscience Washington University Medical School St Louis, MO 63110 Draft 1.2.1 Nov. 10, 2019 Things to add: gel electrophoresis methods basic bacteriology methods Index Overview E. coli vectors! 6 Types of E. coli vectors! 6 Components of typical plasmid vectors! 6 Origin of replication! 6 Antibiotic resistance genes! 7 Master Cloning Sites! 7 LacZ"! 7 ccdB ! 8 Design of DNA constructs! 9 Choice of vector! 9 Source of insert! 9 Plasmids! 9 Genomic or cDNA! 9 Synthetic DNA! 10 Overview of different approaches to creating clones! 10 Restriction enzyme based cloning! 10 Single vs. double cut method! 11 Blunt vs “sticky” restriction sites! 11 Typical methodology for restriction enzyme cloning! 11 Golden Gate style cloning! 12 Typical methodology for Golden Gate cloning! 12 Gateway cloning! 13 Typical methodology for Gateway cloning! 14 Gibson assembly cloning! 15 Typical procedure for Gibson assembly! 15 Site directed mutagenesis! 16 PCR overlap approach! 16 DpnI mediated site directed mutagenesis! 16 Typical procedure for site directed mutagenesis! 17 Detailed methodology for all five methods Restriction enzyme cloning! 18 Designing the cloning strategy ! 18 Determining which vector to use! 18 Designing the insert fragment! 19 Designing primers! 19 Vector preparation! 19 Insert preparation! 19 Detailed protocol! 20 Step 1: Design oligonucleotides to amplify the product of interest! 20 Step 2: PCR amplification of insert DNA! 20 Step 3: Clean-up purification of PCR product! 21 Step 4: Digestion of products! 21 Step 5: Gel purification of products! 22 Step 6: Ligation! 22 Step 7: Transformation of E.
    [Show full text]
  • The Cloning Guide the First Step Towards a Succesful Igem Project Igem Bonn NRP-UEA Igem
    The Cloning Guide The first step towards a succesful iGEM Project iGEM Bonn NRP-UEA iGEM iGEM Manchester-Graz iGEM Evry iGEM Vanderbilt iGEM Minnesota Carnegie Mellon iGEM iGEM Sydney UIUC iGEM iGEM York iGEM Toulouse iGEM Pasteur UCLA iGEM iGEM Stockholm Preface The cloning guide which is lying before you or on your desktop is a document brought to you by iGEM TU Eindhoven in collaboration with numerous iGEM (International Genetically Engi- neered Machine) teams during iGEM 2015. An important part in the iGEM competition is the collabration of your own team with other teams. These collaborations are fully in line with the dedications of the iGEM Foundation on education and competition, the advancement of syn- thetic biology, and the development of an open community and collaboration. Collaborations between groups of (undergrad and overgrad) students can lead to nice products, as we have tried to provide one for you in 2015. In order to compile a cloning guide, several iGEM teams from all over the world have been con- tacted to cooperate on this. Finally fifiteen teams contributed in a fantastic way and a cloning guide consisting of the basics about nine different cloning methods and experiences of teams working with them has been realized. Without the help of all collaborating teams this guide could never have been realized, so we will thank all teams in advance. This guide may be of great help when new iGEM teams (edition 2016 and later) are at the point of designing their project. How to assemble the construct for you project, is an important choice which is possibly somewhat easier to make after reading this guide.
    [Show full text]
  • Structures of Restriction Endonuclease Hindiii in Complex with Its Cognate DNA and Divalent Cations
    Title Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations Author(s) Watanabe, Nobuhisa; Takasaki, Yozo; Sato, Chika; Ando, Shoji; Tanaka, Isao Acta Crystallographica. Section D, Biological Crystallography, 65(12), 1326-1333 Citation https://doi.org/10.1107/S0907444909041134 Issue Date 2009-12 Doc URL http://hdl.handle.net/2115/39986 Type article File Information watanabe_ActaCristD65.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP electronic reprint Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Editors: E. N. Baker and Z. Dauter Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations Nobuhisa Watanabe, Yozo Takasaki, Chika Sato, Shoji Ando and Isao Tanaka Acta Cryst. (2009). D65, 1326–1333 Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see http://journals.iucr.org/services/authorrights.html Acta Crystallographica Section D: Biological Crystallography welcomes the submission of papers covering any aspect of structural biology, with a particular emphasis on the struc- tures of biological macromolecules and the methods used to determine them. Reports on new protein structures are particularly encouraged, as are structure–function papers that could include crystallographic binding studies, or structural analysis of mutants or other modified forms of a known protein structure. The key criterion is that such papers should present new insights into biology, chemistry or structure.
    [Show full text]
  • A Short History of the Restriction Enzymes Wil A
    Published online 18 October 2013 Nucleic Acids Research, 2014, Vol. 42, No. 1 3–19 doi:10.1093/nar/gkt990 NAR Breakthrough Article SURVEY AND SUMMARY Highlights of the DNA cutters: a short history of the restriction enzymes Wil A. M. Loenen1,*, David T. F. Dryden2,*, Elisabeth A. Raleigh3,*, Geoffrey G. Wilson3,* and Noreen E. Murrayy 1Leiden University Medical Center, Leiden, the Netherlands, 2EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and 3New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA Received August 14, 2013; Revised September 24, 2013; Accepted October 2, 2013 ABSTRACT Type II REases represent the largest group of characterized enzymes owing to their usefulness as tools for recombinant In the early 1950’s, ‘host-controlled variation in DNA technology, and they have been studied extensively. bacterial viruses’ was reported as a non-hereditary Over 300 Type II REases, with >200 different sequence- phenomenon: one cycle of viral growth on certain specificities, are commercially available. Far fewer Type I, bacterial hosts affected the ability of progeny virus III and IV enzymes have been characterized, but putative to grow on other hosts by either restricting or examples are being identified daily through bioinformatic enlarging their host range. Unlike mutation, this analysis of sequenced genomes (Table 1). change was reversible, and one cycle of growth in Here we present a non-specialists perspective on import- the previous host returned the virus to its original ant events in the discovery and understanding of REases. form. These simple observations heralded the dis- Studies of these enzymes have generated a wealth of covery of the endonuclease and methyltransferase information regarding DNA–protein interactions and catalysis, protein family relationships, control of restric- activities of what are now termed Type I, II, III and tion activity and plasticity of protein domains, as well IV DNA restriction-modification systems.
    [Show full text]
  • NEB Golden Gate Assembly Kit (Bsai-Hfv2) E1601 Manual
    INSTRUCTION MANUAL NEB® Golden Gate Assembly Kit (BsaI-HF®v2) NEB #E1601S/L 20/100 reactions Version 2.0_2/20 Table of Contents Golden Gate Assembly Overview ............................................................................................................................................................... 2 pGGAselect Destination Plasmid Description ............................................................................................................................................ 3 Insert Considerations ................................................................................................................................................................................... 4 Golden Gate Assembly Transformation and Plating Protocols ................................................................................................................... 5 Screening Protocols ..................................................................................................................................................................................... 6 Frequently Asked Questions (FAQs) .......................................................................................................................................................... 6 Golden Gate Assembly Tips ........................................................................................................................................................................ 8 Specifications ..............................................................................................................................................................................................
    [Show full text]
  • NF1) Pseudogenes on Chromosomes 2, 14 and 22
    European Journal of Human Genetics (2000) 8, 209–214 © 2000 Macmillan Publishers Ltd All rights reserved 1018–4813/00 $15.00 y www.nature.com/ejhg ARTICLE Mechanism of spreading of the highly related neurofibromatosis type 1 (NF1) pseudogenes on chromosomes 2, 14 and 22 Mirjam Luijten1, YingPing Wang2, Blaine T Smith2, Andries Westerveld1, Luc J Smink3, Ian Dunham3, Bruce A Roe2 and Theo JM Hulsebos1 1Department of Human Genetics, Academic Medical Center, University of Amsterdam, The Netherlands; 2Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA; 3Sanger Centre, Wellcome Trust Genome Campus, Hinxton Hall, Cambridge, UK Neurofibromatosis type 1 (NF1) is a frequent hereditary disorder that involves tissues derived from the embryonic neural crest. Besides the functional gene on chromosome arm 17q, NF1-related sequences (pseudogenes) are present on a number of chromosomes including 2, 12, 14, 15, 18, 21, and 22. We elucidated the complete nucleotide sequence of the NF1 pseudogene on chromosome 22. Only the middle part of the functional gene but not exons 21–27a, encoding the functionally important GAP-related domain of the NF1 protein, is presented in this pseudogene. In addition to the two known NF1 pseudogenes on chromosome 14 we identified two novel variants. A phylogenetic tree was constructed, from which we concluded that the NF1 pseudogenes on chromosomes 2, 14, and 22 are closely related to each other. Clones containing one of these pseudogenes cross-hybridised with the other pseudogenes in this subset, but did not reveal any in situ hybridisation with the functional NF1 gene or with NF1 pseudogenes on other chromosomes.
    [Show full text]
  • Anza Restriction Enzyme Cloning System Complete, One-Buffer System— for Beautifully Simple Cloning Cloning Has Never Been Simpler
    Anza Restriction Enzyme Cloning System Complete, one-buffer system— for beautifully simple cloning Cloning has never been simpler Finally, forget the frustrations of finding compatible buffers and sorting through protocols for your restriction enzyme digests—start getting reliable results for your downstream experiments. The Invitrogen™ Anza™ Restriction Enzyme Cloning System is a complete system, comprised of: DNA modifying enzymes 128 restriction enzymes + 5 DNA modifying enzymes Anza T4 DNA Ligase Master Mix Anza Thermosensitive All Anza™ restriction enzymes work together cohesively and are fully functional Alkaline Phosphatase with the single Anza™ buffer. Anza T4 Polynucleotide Kinase The system offers: Anza DNA Blunt End Kit • One buffer for all restriction enzymes Anza DNA End Repair Kit • One digestion protocol for all DNA types • Complete digestion in 15 minutes • Overnight digestion without star activity Convenient buffer formats All Anza restriction enzymes come with an Anza 10X Buffer and an Anza 10X Red Buffer to give you the flexibility you require. The red buffer includes a density reagent containing red and yellow tracking dyes that migrate with 800 bp DNA fragments and faster than the 10 bp DNA fragments, respectively, in a 1% agarose gel. This eliminates tedious dye addition steps prior to gel loading and is compatible with downstream applications.* * For applications that require analysis by fluorescence excitation, Anza 10X Buffer is recommended, as the Anza 10X Red Buffer may interfere with some fluorescence measurements. 2 A one-buffer system Eliminate the frustration of trying to find compatible buffers for all your enzymes. All Anza restriction enzymes allow for complete digestion using a single Anza buffer.
    [Show full text]
  • The Ecori Endonuclease (Temperature-Sensitive Ecori Mutants/DNA Ligase/SOS Response/DNA Repair) JOSEPH HEITMAN, NORTON D
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 2281-2285, April 1989 Genetics Repair of the Escherichia coli chromosome after in vivo scission by the EcoRI endonuclease (temperature-sensitive EcoRI mutants/DNA ligase/SOS response/DNA repair) JOSEPH HEITMAN, NORTON D. ZINDER, AND PETER MODEL The Rockefeller University, New York, N.Y. 10021 Contributed by Norton D. Zinder, November 22, 1988 ABSTRACT We prepared a set of temperature-sensitive Table 1. E. coli strains mutants of the EcoRI endonuclease. Under semipermissive Strain Relevant genotype Source conditions, Escherichia coli strains bearing these alleles form poorly growing colonies in which intracellular substrates are HB101 recAJ3 Ref. 16 cleaved at EcoRI sites and the SOS DNA repair response is JH11 HB101 recAp This study induced. Strains defective in SOS induction (lexA3 mutant) or JH20 K91 IexA3 Ref. 15 SOS induction and recombination (recA56 and recB21 mu- JH27 K91 recA56 This study tants) are not more sensitive to this in vivo DNA scission, JH39 dinDl::Mu dI(Apr lac) Ref. 15 whereas strains deficient in DNA ligase (lig4 and Ug ts7mutants) JH59 JH39 recA56 Ref. 15 are extremely sensitive. We conclude that although DNA JH117 JH39 recB21 thyA::TnJO This study scission induces the SOS response, neither this induction nor JH137 K91 dinDl::Mu dI(Apr lac) This study JH144 K91 recN262 tyrAl6::TnlO This study recombination are required for repair. DNA ligase is necessary JH145 K91 recB2l thyA::TnJO This study and may be sufficient to repair EcoRI-mediated DNA breaks in JH154 JH39 lexA3 maIE::TnJO This study the E. coli chromosome.
    [Show full text]
  • A Versatile Framework for Golden Gate Assembly Andreas I
    bioRxiv preprint doi: https://doi.org/10.1101/140095; this version posted May 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Mobius Assembly: a versatile framework for Golden Gate assembly Andreas I. Andreou1,* and Naomi Nakayama1,* SynthSys Centre for Synthetic and Systems Biology, Centre for Science at Extreme Condition, and Institute of Molecular Plant Sciences 1: School of Biological Sciences, Max Born Crescent, Kings Buildings, University of Edinburgh, EH9 3BF, UK *: Co-corresponding authors. [email protected]; [email protected] Mobius Assembly mUAV Α,Β,Γ,Δ Α,Β,Γ,Δ Abstract: Golden Gate Assembly is a powerful synthetic biology tool, which utilizes Type IIS enzymes for unidirectional assembly of multiple DNA fragments. The simplicity of its DNA assembly and the exchangeability of standard parts greatly facilitate the generation of combinatorial assembly libraries. Currently there are two popular Golden Gate Assembly frameworks that allow multigene augmentation (MoClo and Golden Braid); they render either high cloning capacity or vector toolkit simplicity. We have developed a new Golden Gate Assembly framework called Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. Mobius Assembly is based on a two-level approach and embraces the standard overhangs defined by MoClo and Golden Braid to confer exchangeability, but with reduced domestication requirement. Furthermore, we have implemented drop-out cassettes encoding chromogenic proteins for visible cloning screening.
    [Show full text]
  • A Comparative Study on the Recovery of Ecori Endonuclease from Two Different Genetically Modified Strains of Escherichia Coli
    Turk J Chem 25 (2001) , 63 – 71. c TUB¨ ITAK˙ A Comparative Study on the Recovery of EcoRI Endonuclease from Two Different Genetically Modified Strains of Escherichia coli Candan TAMERLER,Z.∗ Ilsen˙ ONSAN,¨ Bet¨ul KIRDAR Department of Chemical Engineering, Bo˘gazi¸ci University, 80815 Bebek, Istanbul˙ - TURKEY Received 21.07.1999 A laboratory scale procedure developed for the purification of EcoRI restriction endonuclease was applied to two different Escherichia coli strains, E. coli 294 and E. coli M5248, which are genetically modified to overproduce the enzyme. The purification method consisted of three successive chromato- graphic steps including phosphocellulose and hydroxyapatite columns and further fractionation in a second phosphocellulose column. It was shown that the second phosphocellulose separation can be omit- ted in the case of E. coli 294. Quality control tests indicated enzyme preparations free of contaminants and endo- or exo-nucleases. The yields obtained at the final stage of the purification were 1.3x105 U/g cells for E. coli M5248 and 3.3x106 U/g cells for E. coli 294. Key Words: EcoRI endonuclease, recombinant E. coli, purification, enzyme recovery Introduction Restriction enzymes have extensive applications in recombinant DNA technology. They are used in the preparation of recombinant molecules, and they provide an attractive system for the analysis of sequence specific DNA-protein interactions1. Escherichia coli RI (EcoRI) endonuclease is a well-known restriction enzyme that recognizes the symmetrical hexanucleotide sequence GAATTC on duplex DNA and cleaves each strand between G and A residues2. Physical and catalytic properties of EcoRI restriction endonuclease have been extensively studied by several groups and different purification protocols have been described1−9.
    [Show full text]