Substrate-Assisted Catalysis in the Cleavage of DNA by the Ecori and Ecorv Restriction Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Substrate-Assisted Catalysis in the Cleavage of DNA by the Ecori and Ecorv Restriction Enzymes Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8499-8503, September 1993 Biochemistry Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes (acid base catalysis/mechanism of deavage/nuclease/chemicafly modiffed oligodeoxynucleotide/H-phosphonate) ALBERT JELTSCH, JURGEN ALVES, HEINER WOLFES, GUNTER MAASS, AND ALFRED PINGOUD* Zentrum Biochemie, Medizinische Hochschule Hannover, Konstanty-Gutschow-Strasse 8, 30623 Hannover, Germany Communicated by Thomas R. Cech, June 14, 1993 ABSTRACT The crystal structure analyses of the EcoRI- stereochemistry of their catalysis make it likely that these DNA and EcoRV-DNA complexes do not provide clear sug- enzymes cleave DNA by a similar mechanism that involves gestions as to which amino acid residues are responsible for the an attack of an activated water molecule in-line with the activation of water to carry out the DNA cleavage. Based on leaving 03' group. Recently, we published (11) a detailed molecular modeling, we have proposed recently that the at- proposal for the mechanism of DNA cleavage by EcoRI and tacking water molecule is activated by the negatively charged EcoRV based on structural data (Brookhaven data bank pro-Rp phosphoryl oxygen of the phosphate group 3' to the entries: 1RlE, 3RVE), molecular modeling, and results of scissile phosphodiester bond. We now present experimental site-directed mutagenesis experiments (ref. 12 and references evidence to support this proposal. (0) Oligodeoxynucleotide therein): Asp-91 and Glu-111 in EcoRI, Asp-74 and Asp-90 in substrates lacking this phosphate group in one strand are EcoRV, and the phosphate at which cleavage occurs were cleaved only in the other strand. (it) Oligodeoxynucleotide proposed to bind the essential cofactor Mg2+. The divalent substrates carrying an H-phosphonate substitution at this metal ion probably has several functions: it might help to bind position in both strands and, therefore, lacking a negatively and to position the DNA, it could also partially neutralize the charged oxygen at this position are cleaved at least four orders extra negative charge at phosphorus in the transition state ofmagitude more slowly than the unmodified substrate. These and supply a water molecule in its coordination sphere to results are supported by other modification studies: oligode- protonate the leaving group after cleavage. Lys-113 in EcoRI oxynucleotide substrates with a phosphorothioate substitution and Lys-92 in EcoRV might help to neutralize the extra at this position in both strands are cleaved only ifthe negatively negative charge in the transition state. In the proposed charged sulfur is in the Rp configwuration as shown for EcoRI mechanism, the attacking water molecule is activated by the [Koziolkiewicz, M. & Stec, W. J. (1992) Biochemistry 31, pro-Rp phosphoryl oxygen of the phosphate group on the 3' 9460-9466] and EcoRV (B. A. Connoily, personal communi- side ofthe scissile bond (Fig. 1). This assignment of a part of cation). As the phosphate residue 3' to the scissile phosphodi- the substrate to play an active role in the catalytic process ester bond is not needed for strong DNA binding by both was suggested by the fact that, in the structures ofthe specific enzymes, these fings strongly suggest that this phosphate EcoRI-DNA and EcoRV-DNA complexes, no amino acid group plays an active role during catalysis. This proposal, side chain was found in a position where it could function as furthermore, gives a straightforward explanation ofwhy in the a general base to activate water. A water molecule modeled EcoRI-DNA and EcoRV-DNA complexes the DNA is distorted into the structures of the EcoRI-DNA and EcoRV-DNA differently, but in each case the 3' phosphate group closely complexes, such that it takes up the appropriate position approaches the phosphate group that is attacked. Finally, an in-line with the bond to be cleaved, is in hydrogen-bonding alternative mechanism for DNA cleavage involving two metal distance to the pro-Rp phosphoryl oxygen of the phosphate ions is unlikely in the light of our finding that both EcoRI and group 3' adjacent to the scissile phosphodiester bond (11). EcoRV need only one Mg2+ per active site for cleavage. To analyze the role ofthe phosphate group 3' to the scissile phosphodiester bond and its negatively charged phosphoryl Type II restriction endonucleases bind and cleave double- oxygen in the mechanism of EcoRI- and EcoRV-catalyzed stranded DNA with high specificity at sites 4-6 bp long (for DNA cleavage, we have employed chemically modified oli- reviews, see refs. 1-5). All these endonucleases need Mg2+ godeoxynucleotide substrates lacking this phosphate group as a cofactor for catalysis, some also need it for specific or its negatively charged phosphoryl oxygen in "missing- binding, and produce fragments with 5'-phosphorylated contact" experiments (for a discussion of the principal prob- ends. For two restriction enzymes, EcoRI (for reviews, see lems associated with the use of modified oligodeoxynucle- refs. 2 and 3) and EcoRV (for review, see ref. 4), the otides in the study ofprotein-DNA interactions, see ref. 13). stereochemical course ofthe cleavage has been determined to Such experiments have proven to be very useful in identify- proceed with an inversion of configuration at phosphorus (6, ing the contribution of a base (14) or a nucleoside (15) to 7). As x-ray structures have been solved for EcoRI and specific binding of DNA by proteins. Missing-contact exper- EcoRV in complex with the specific DNA substrate (8, 9), the iments can also contribute to understanding catalysis. catalytic centers of these enzymes could be identified. In- triguingly, they turned out to be remarkably similar in struc- MATERIALS AND METHODS ture (10). This finding came as a surprise, considering the fact that EcoRI and EcoRV are not significantly homologous, EcoRI and EcoRV. EcoRI, EcoRV, and the EcoRV mutant recognize different DNA sequences, and cleave DNA to D90A (10) were homogeneous preparations obtained from produce sticky and blunt ends, respectively. The similarity of overproducing Escherichia coli strains by procedures as the catalytic centers of EcoRI and EcoRV and the identical described (16, 17). Oligodeoxynucleotide Substrates. Oligodeoxynucleotides were on solid support with a Milligen Cyclone The publication costs ofthis article were defrayed in part by page charge synthesized payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 8499 Downloaded by guest on September 30, 2021 8500 Biochemistry: Jeltsch et al. Proc. Natl. Acad. Sci. USA 90 (1993) EcoRV T A '\ G scissile <attacking I Lysll3 T bond H20 sssile H2O L92 bond 2+ Mg 2+ Mg ) ~~~~~~~~~~~protonating 4 protonating H20 H20 Ap9O Glulli Asp9l sp74 FIG. 1. Molecular model of the catalytic centers of EcoRI and EcoRV based on the coordinates of the EcoRI-DNA and EcoRV-DNA complexes (Brookhaven data bank entries, lRlE and 3RVE). The water molecules and the Mg2+ ion have been modeled into the structure, in the EcoRI-DNA complex also the amino acid side chains (for details, see ref. 11). For clarity only those amino acids directly involved in the catalytic mechanism and the sugar phosphate backbone of one strand ofthe DNA are shown. The attacking water molecule is hydrogen-bonded to the phosphate group 3' to the scissile bond. A second water molecule in the hydration sphere ofthe Mg2+ ion is hydrogen-bonded to the leaving group. DNA synthesizer using ,B-cyanoethylphosphoramidites ob- melting experiments carried out as described (19). Melting tained from MWG-Biotech (Ebersberg, Germany) and puri- temperature values are as follows: RI/RVum, 70°C; RIum, fied by HPLC (18). 400(; RVum, 45°C; RImp, 50°C; RVmp, 53°C; RIhp, 37°C; (i) Three unmodified (um) substrates serving as reference RVhp, 40°C. The melting curves of the missing-phosphate substrates for the modified substrates [recognition sequences substrates, RImp and RVmp, show a broader transition than are in boldface type]. the reference substrate, RI/RVum, indicating dissociation of the shorter oligodeoxynucleotide from the discontinuous RI/RVum: strand at around 350( (data not shown). EcoRI EcoRV DNA Cleavage Experiments. Oligodeoxynucleotides were GpGpGpCpTpApGpipkpTpTpCpGpIpTp&pTpCpGpCpTpApCpTpGpC labeled with T4 polynucleotide kinase (AGS, Heidelberg, CpCpCpGpApTpCpTpTpApkpGpCpTpIpTpApGpCpGpApTpGpApCpG Germany) or terminal deoxynucleotidyltransferase (Pharma- RIum: TpApTpApGpipipTpTpCpTpApT cia) by using [y-32P]ATP or dideoxyadenosine 5'-[a- TpApTpCpTpTpApipGpApTpApT 32P]triphosphate (Amersham-Buchler, Braunschweig, Ger- many). The cleavage reactions with the missing-phosphate RVum: CpGpCpGpGpIpTp&pTpCpCpGpC substrates were carried out at 4°C in 20 mM Tris-HCl, pH CpGpCpCpTpApTpApGpGpCpGpC 7.5/50 mM NaCl/10 mM Mg922, as described (19). All other (ii) Missing-phosphate (mp) substrates (note that these cleavage reactions were carried out at 210C. Products of double-stranded substrates have one continuous and one cleavage in one strand ("nicking") were separated by homo- discontinuous strand). chromatography or gel electrophoresis. Substrate concentra- tions were 0.1 or 1 ,uM. Enzyme concentrations were varied RImp: between S nM and 1 ,uM depending on whether multiple- GpGpGpCpTpApGpk &pTpTpCpGpApTpApTpCpGpCpTpApCpTpGpC turnover (RIum, RVum) or single-turnover experiments CpCpCpGpApTpCpTpTpkpIpGpCpTpApTpApGpCpGpApTpGpApCpG (modified
Recommended publications
  • Restriction-Modification Gene Complexes As Selfish Gene Entities: Roles of a Regulatory System in Their Establishment, Maintenan
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6442–6447, May 1998 Microbiology Restriction-modification gene complexes as selfish gene entities: Roles of a regulatory system in their establishment, maintenance, and apoptotic mutual exclusion (programmed cell deathyepigeneticsyintragenomic conflictsyphage exclusionyplasmid) Y. NAKAYAMA AND I. KOBAYASHI* Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan Communicated by Allan Campbell, Stanford University, Stanford, CA, March 6, 1998 (received for review May 31, 1997) ABSTRACT We have reported some type II restriction- cell has lost its RM gene complex, its descendants will contain modification (RM) gene complexes on plasmids resist displace- fewer and fewer molecules of the modification enzyme. Eventu- ment by an incompatible plasmid through postsegregational host ally, their capacity to modify the many sites needed to protect the killing. Such selfish behavior may have contributed to the spread newly replicated chromosomes from the remaining pool of restric- and maintenance of RM systems. Here we analyze the role of tion enzyme may become inadequate. Chromosomal DNA will regulatory genes (C), often found linked to RM gene complexes, then be cleaved at the unmodified sites, and the cells will be killed in their interaction with the host and the other RM gene com- (refs. 2–4; N. Handa, A. Ichige, K. Kusano, and I.K., unpublished plexes. We identified the C gene of EcoRV as a positive regulator results). This result is similar to the postsegregational host killing of restriction. A C mutation eliminated postsegregational killing mechanisms for maintenance of several plasmids (5). These RM by EcoRV.
    [Show full text]
  • Molecular Cloning of DNA Fragments Produced by Restriction
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 5, pp. 1537-1541, May 1976 Biochemistry Molecular cloning of DNA fragments produced by restriction endonucleases SailI and BamI (DNA joining/plasmid/insertional inactivation of genes/Drosophila melanogaster) DEAN H. HAMER AND CHARLES A. THOMAS, JR. Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Communicated by Bernard D. Dats, February 25,1976 ABSTRACT The highly specific restriction endonucleases cleaves various DNAs about once every 8 kb (kilobases), as SalI and BamI produce DNA fragments with complementary, compared to about once every 4 kb for EcoRI (16, 18). The cohesive termini that can be covalently joined by DNA ligase. resulting fragments have cohesive termini, and can be joined The Escherichia coli kanamycin resistance factor pML21 has to one another in head-to-tail, head-to-head, and one Sall site, at which DNA can be inserted without interfering probably with the expression of drug resistance or replication of the tail-to-tail orientation. Another highly specific restriction en- plasmid. A more convenient cloning vehicle can be made with donuclease that produces cohesive termini is BamI, from Ba- the tetracycline resistance factor pSC101, since insertion of cillus amyloliqefaciens H (G. Wilson and F. Young, personal DNA either at its single site for Sall or at that for BamI inacti- communication). We have shown that it cleaves D. melano- vates plasmid-specified drug resistance but not replication. To gaster DNA about once every 6 kb. This report describes the take advantage of this insertional inactivation, pSC101 was construction and verification of plasmid vehicles that allow one joined to a ColEl-ampicillin resistance plasmid having no Sall site, and to a ColEl-kanamycin resistance plasmid having no to clone and amplify potentially any DNA fragment produced BamI site.
    [Show full text]
  • From Genes to Genomes
    From Genes to Genomes Third Edition Concepts and Applications of DNA Technology Jeremy W. Dale, Malcolm von Schantz and Nick Plant University of Surrey, UK ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Preface xiii 1 From Genes to Genomes 1 1.1 Introduction 1 1.2 Bask molecular biology 4 1.2.1 The DNA backbone 4 1.2.2 The base pairs 6 1.2.3 RNA structure 10 1.2.4 Nucleic acid synthesis 11 1.2.5 Coiling and supercoilin 11 1.3 What is a gene? 13 1.4 Information flow: gene expression 15 1.4.1 Transcription 16 1.4.2 Translation 19 1.5 Gene structure and organisation 20 1.5.1 Operons 20 1.5.2 Exons and introns 21 1.6 Refinements of the model 22 2 How to Clone a Gene 25 2.1 What is cloning? 25 2.2 Overview of the procedures 26 2.3 Extraction and purification of nucleic acids 29 2.3.1 Breaking up cells and tissues 29 2.3.2 Alkaline denaturation 31 2.3.3 Column purification 31 2.4 Detection and quantitation of nucleic acids 32 2.5 Gel electrophoresis 33 2.5.1 Analytical gel electrophoresis 33 2.5.2 Preparative gel electrophoresis 36 vi CONTENTS 2.6 Restriction endonudeases 36 2.6.1 Specificity 37 2.6.2 Sticky and blunt ends 40 2.7 Ligation 42 2.7.1 Optimising Ligation conditions 44 2.7.2 Preventing unwanted Ligation: alkaline phosphatase and double digests 46 2.7.3 Other ways of joining DNA fragments 48 2.8 Modification of restriction fragment ends 49 2.8.1 Linkers and adaptors 50 2.8.2 Homopolymer tailing 52 2.9 Plasmid vectors 53 2.9.1 Plasmid replication 54 2.9.2 Cloning sites 55 2.9.3 Selectable markers 57 2.9.4 Insertional inactivation
    [Show full text]
  • Datasheet for Ecorv-HF™ (R3195; Lot 0051211)
    Source: An E. coli strain that carries the cloned Diluent Compatibility: Diluent Buffer B Endonuclease Activity: Incubation of a 50 µl and modified (D19A, E27A) EcoRV gene from the 300 mM NaCl, 10 mM Tris-HCl, 0.1 mM EDTA, reaction containing 30 units of enzyme with 1 µg ™ plasmid J62 pLG74 (L.I. Glatman) 1 mM dithiothreitol, 500 µg/ml BSA and 50% glyc- of φX174 RF I DNA for 4 hours at 37°C resulted EcoRV-HF erol (pH 7.4 @ 25°C) in < 30% conversion to RFII as determined by Supplied in: 200 mM NaCl, 10 mM Tris-HCl agarose gel electrophoresis. 1-800-632-7799 (ph 7.4), 0.1 mM EDTA, 1 mM DTT, 200 µg/ml Quality Controls [email protected] BSA and 50% glycerol. Ligation: After 10-fold overdigestion with Blue/White Screening Assay: An appropriate www.neb.com α R3195S 005121114111 EcoRV- HF, > 95% of the DNA fragments can vector is digested at a unique site within the lacZ Reagents Supplied with Enzyme: be ligated with T4 DNA Ligase (at a 5´ termini gene with a 10-fold excess of enzyme. The vector 10X NEBuffer 4. concentration of 1–2 µM) at 16°C. Of these ligated DNA is then ligated, transformed, and plated onto R3195S fragments, > 95% can be recut with EcoRV-HF. Xgal/IPTG/Amp plates. Successful expression Reaction Conditions: 1X NEBuffer 4. of β-galactosidase is a function of how intact its 4,000 units 20,000 U/ml Lot: 0051211 Incubate at 37°C. 16-Hour Incubation: A 50 µl reaction containing gene remains after cloning, an intact gene gives 1 µg of DNA and 120 units of EcoRV-HF incubated rise to a blue colony, removal of even a single RECOMBINANT Store at –20°C Exp: 11/14 1X NEBuffer 4: for 16 hours at 37°C resulted in a DNA pattern free base gives rise to a white colony.
    [Show full text]
  • Thermodynamics of DNA Binding and Break Repair by the Pol I DNA
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Thermodynamics of DNA binding and break repair by the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus Yanling Yang Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Yang, Yanling, "Thermodynamics of DNA binding and break repair by the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus" (2011). LSU Doctoral Dissertations. 3092. https://digitalcommons.lsu.edu/gradschool_dissertations/3092 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING AND BREAK REPAIR BY THE POL I DNA POLYMERASES FROM ESCHERICHIA COLI AND THERMUS AQUATICUS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Yanling Yang B.S., Qufu Normal University, 2001 M.S., Institute of Microbiology, Chinese Academy Sciences, 2004 M.S. in statistics, Louisiana State University, 2009 December 2011 ACKNOWLEDGMENTS I would like to express my sincere gratitude to some of the people without whose support and guidance none of this work would have been possible. I deeply thank my advisor, Dr. Vince J. LiCata. His guidance and suggestions have been critical to the completion of this research work and the writing of this dissertation.
    [Show full text]
  • Cloning of Gene Coding Glyceraldehyde-3-Phosphate Dehydrogenase Using Puc18 Vector
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2015, 5(3):52-57 ISSN: 2248 –9215 CODEN (USA): EJEBAU Cloning of gene coding glyceraldehyde-3-phosphate dehydrogenase using puc18 vector Manoj Kumar Dooda, Akhilesh Kushwaha *, Aquib Hasan and Manish Kushwaha Institute of Transgene Life Sciences, Lucknow (U.P), India _____________________________________________________________________________________________ ABSTRACT The term recombinant DNA technology, DNA cloning, molecular cloning, or gene cloning all refers to the same process. Gene cloning is a set of experimental methods in molecular biology and useful in many areas of research and for biomedical applications. It is the production of exact copies (clones) of a particular gene or DNA sequence using genetic engineering techniques. cDNA is synthesized by using template RNA isolated from blood sample (human). GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) is one of the most commonly used housekeeping genes used in comparisons of gene expression data. Amplify the gene (GAPDH) using primer forward and reverse with the sequence of 5’-TGATGACATCAAGAAGGTGGTGAA-3’ and 5’-TCCTTGGAGGCCATGTGGGCCAT- 3’.pUC18 high copy cloning vector for replication in E. coli, suitable for “blue-white screening” technique and cleaved with the help of SmaI restriction enzyme. Modern cloning vectors include selectable markers (most frequently antibiotic resistant marker) that allow only cells in which the vector but necessarily the insert has been transfected to grow. Additionally the cloning vectors may contain color selection markers which provide blue/white screening (i.e. alpha complementation) on X- Gal and IPTG containing medium. Keywords: RNA isolation; TRIzol method; Gene cloning; Blue/white screening; Agarose gel electrophoresis.
    [Show full text]
  • How to Clone Ref V1-2
    A primer on cloning in E. coli Michael Nonet Department of Neuroscience Washington University Medical School St Louis, MO 63110 Draft 1.2.1 Nov. 10, 2019 Things to add: gel electrophoresis methods basic bacteriology methods Index Overview E. coli vectors! 6 Types of E. coli vectors! 6 Components of typical plasmid vectors! 6 Origin of replication! 6 Antibiotic resistance genes! 7 Master Cloning Sites! 7 LacZ"! 7 ccdB ! 8 Design of DNA constructs! 9 Choice of vector! 9 Source of insert! 9 Plasmids! 9 Genomic or cDNA! 9 Synthetic DNA! 10 Overview of different approaches to creating clones! 10 Restriction enzyme based cloning! 10 Single vs. double cut method! 11 Blunt vs “sticky” restriction sites! 11 Typical methodology for restriction enzyme cloning! 11 Golden Gate style cloning! 12 Typical methodology for Golden Gate cloning! 12 Gateway cloning! 13 Typical methodology for Gateway cloning! 14 Gibson assembly cloning! 15 Typical procedure for Gibson assembly! 15 Site directed mutagenesis! 16 PCR overlap approach! 16 DpnI mediated site directed mutagenesis! 16 Typical procedure for site directed mutagenesis! 17 Detailed methodology for all five methods Restriction enzyme cloning! 18 Designing the cloning strategy ! 18 Determining which vector to use! 18 Designing the insert fragment! 19 Designing primers! 19 Vector preparation! 19 Insert preparation! 19 Detailed protocol! 20 Step 1: Design oligonucleotides to amplify the product of interest! 20 Step 2: PCR amplification of insert DNA! 20 Step 3: Clean-up purification of PCR product! 21 Step 4: Digestion of products! 21 Step 5: Gel purification of products! 22 Step 6: Ligation! 22 Step 7: Transformation of E.
    [Show full text]
  • The Cloning Guide the First Step Towards a Succesful Igem Project Igem Bonn NRP-UEA Igem
    The Cloning Guide The first step towards a succesful iGEM Project iGEM Bonn NRP-UEA iGEM iGEM Manchester-Graz iGEM Evry iGEM Vanderbilt iGEM Minnesota Carnegie Mellon iGEM iGEM Sydney UIUC iGEM iGEM York iGEM Toulouse iGEM Pasteur UCLA iGEM iGEM Stockholm Preface The cloning guide which is lying before you or on your desktop is a document brought to you by iGEM TU Eindhoven in collaboration with numerous iGEM (International Genetically Engi- neered Machine) teams during iGEM 2015. An important part in the iGEM competition is the collabration of your own team with other teams. These collaborations are fully in line with the dedications of the iGEM Foundation on education and competition, the advancement of syn- thetic biology, and the development of an open community and collaboration. Collaborations between groups of (undergrad and overgrad) students can lead to nice products, as we have tried to provide one for you in 2015. In order to compile a cloning guide, several iGEM teams from all over the world have been con- tacted to cooperate on this. Finally fifiteen teams contributed in a fantastic way and a cloning guide consisting of the basics about nine different cloning methods and experiences of teams working with them has been realized. Without the help of all collaborating teams this guide could never have been realized, so we will thank all teams in advance. This guide may be of great help when new iGEM teams (edition 2016 and later) are at the point of designing their project. How to assemble the construct for you project, is an important choice which is possibly somewhat easier to make after reading this guide.
    [Show full text]
  • An Interplay Between Nonsense-Mediated Decay and DNA Damage Response Pathways
    An interplay between nonsense-mediated decay and DNA damage response pathways Fatemeh Ghasemi Master Thesis Department of Biosciences Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO June 2020 © Fatemeh Ghasemi June 2020 An interplay between nonsense-mediated decay and DNA damage response pathways Supervisor: Rafal Ciosk Co-supervisors: Pooja Kumari, Yanwu Guo http://www.duo.uio.no/ Trykk: Reprosentralen, Universitetet i Oslo II Acknowledgement The work presented in this master thesis was carried out at the Department of Biosciences, University of Oslo in the period between April 2019 to June 2020. First and foremost, I’d like to thank my supervisor Rafal Ciosk for giving me the opportunity to work in his group. Thank you for all your help and positivity. I greatly appreciate everything I learned in my time here. Second, I’d like to express my deep gratitude to my co-supervisor Pooja Kumari, without whom I couldn’t have done this. Thank you for your daily guidance and support in the lab, I truly appreciate all the advice you’ve given me. Further, I’d like to thank everyone else in the Ciosk group, especially Yanwu Guo, for all their practical help in the lab, and for writing this thesis. Your input and advice have been greatly appreciated. Divya and Melanie, thank you for cheering me up every single day. Thank you also to all my friends in the Falnes group who helped me out when I was wandering the hallway looking lost. Lastly, I would like to thank my parents for their unending love and support, and for believing in me.
    [Show full text]
  • Recombinant DNA Technology and Its Applications: a Review S
    International Journal of MediPharm Research ISSN:2395-423X www.medipharmsai.com Vol.04, No.02, pp 79-88, 2018 Recombinant DNA Technology and its Applications: A Review S. A. Shinde*, S. A. Chavhan, S. B.Sapkal, V. N. Shrikhande Dr. Rajendra Gode College of Pharmacy, Malkapur Dist- Buldana(MS), India Mob. No:-09890251512 Abstract: Biotechnology which is synonymous with genetic engineering or recombinant DNA (rDNA) is an industrial process that uses the scientific research on DNA for practical applications. rDNA is a form of artificial DNA that is made through the combination or insertion of one or more DNA strands,It offered new opportunities for innovations to produce a wide range of therapeutic products with immediate effect in the medical genetics and biomedicine by modifying microorganisms, animals, and plants to yield medically useful substances.Recombinant DNA technology is playing a vital role in improving health conditions by developing new vaccines and pharmaceuticals. This review gives brief introduction to rDNA and its applications in various fields. Key words: Chimeric DNA, restriction enzymes, Transgenic Plants, Gene Therapy. Introduction: Human life is greatly affected by three factors: deficiency of food, health problems, and environmental issues. Food and health are basic human requirements beside a clean and safe environment. With increasing world's population at a greater rate, human requirements for food are rapidly increasing. Humans require safe- food at reasonable price. Several human related health issues across the globe cause large number of deaths. Approximately 36 million people die each year from noncommunicable and communicable diseases, such as cardiovascular diseases, cancer, diabetes, AIDS/HIV, tuberculosis, malaria.
    [Show full text]
  • A Scientific Update
    Fall/Winter 2017 expressions a scientific update ® ! No witchcraft required in this issue – Clone with Confidence 2 Overcoming the challenges of applying target enrichment for translational research 5 Now available: the NEBNext Direct® BRCA1/BRCA2 Panel 6 NEBNext® Ultra™ II RNA Library Prep kits – Streamlined workflows for lower input amounts 8 No witchcraft required: Special Prices on all Restriction Enzymes and more! 14 Get free tube opener with NEB competent cells 16 New to Molecular Biology? Get your free NEB Starter Pack be INSPIRED drive DISCOVERY stay GENUINE FEATURE ARTICLE Overcoming the challenges of applying target enrichment for translational research by Andrew Barry, M.S., New England Biolabs, Inc. Target enrichment is used to describe a variety of strategies to selectively isolate specific genomic regions of interest for sequencing analysis. The wide array of approaches presents challenges in selecting the appropriate technology for the growing number of research and clinical applications to which the sequencing data will ultimately be applied. INTRODUCTION strates the practical need for continued use of Examples of these hybrid approaches include In recent years, several techniques have emerged target enrichment strategies across the gamut of multiplex extension ligation (3), molecular to enrich for specific genes of interest. When translational research activities. inversion probes (MIPS)/padlock probes (4), determining the appropriate target enrichment nested patch PCR (5), and selector probes (6). technology to use, one must first consider the TARGET ENRICHMENT These technologies can be broadly characterized primary goal of the study. For example, different APPROACHES as having more complex workflows, requiring approaches will be used if the aim is to identify splitting of samples into separate reactions, and known variants already shown to have clinical There are a number of different target enrich- creating challenges in target coverage uniformity.
    [Show full text]
  • Restriction Endonucleases
    Restriction Endonucleases TECHNICAL GUIDE UPDATE 2017/18 be INSPIRED drive DISCOVERY stay GENUINE RESTRICTION ENZYMES FROM NEB Cut Smarter with Restriction Enzymes from NEB® Looking to bring CONVENIENCE to your workflow? Simplify Reaction Setup and Double Activity of DNA Modifying Enzymes in CutSmart Buffer: Digestion with CutSmart® Buffer Clone Smarter! Activity Enzyme Required Supplements Over 210 restriction enzymes are 100% active in a single buffer, in CutSmart Phosphatases: CutSmart Buffer, making it significantly easier to set up your Alkaline Phosphatase (CIP) + + + double digest reactions. Since CutSmart Buffer includes BSA, there Antarctic Phosphatase + + + Requires Zn2+ Quick CIP + + + are fewer tubes and pipetting steps to worry about. Additionally, Shrimp Alkaline Phosphatase (rSAP) + + + many DNA modifying enzymes are 100% active in CutSmart Ligases: T4 DNA Ligase + + + Requires ATP Buffer, eliminating the need for subsequent purification. E. coli DNA Ligase + + + Requires NAD T3 DNA Ligase + + + Requires ATP + PEG For more information, visit www.NEBCutSmart.com T7 DNA Ligase + + + Requires ATP + PEG Polymerases: T4 DNA Polymerase + + + DNA Polymerase I, Large (Klenow) Frag. + + + DNA Polymerase I + + + DNA Polymerase Klenow Exo– + + + Bst DNA Polymerase + + + ™ phi29 DNA Polymerase + + + Speed up Digestions with Time-Saver T7 DNA Polymerase (unmodified) + + + Qualified Restriction Enzymes Transferases/Kinases: T4 Polynucleotide Kinase + + + Requires ATP + DTT T4 PNK (3´ phosphatase minus) + + + Requires ATP + DTT > 190 of our restriction enzymes are able to digest DNA in CpG Methyltransferase (M. SssI) + + + 5–15 minutes, and can safely be used overnight with no loss of GpC Methyltransferase (M. CviPI) + Requires DTT T4 Phage β-glucosyltransferase + + + sample. For added convenience and flexibility, most of these are Nucleases, other: supplied with CutSmart Buffer.
    [Show full text]