Wind River General Purpose Platform Vxworks® Edition PRODUCT NOTE

Total Page:16

File Type:pdf, Size:1020Kb

Wind River General Purpose Platform Vxworks® Edition PRODUCT NOTE Wind River General Purpose Platform VxWorks® Edition PRODUCT NOTE Wind River General Purpose Platform, VxWorks Edition (version The real-time operating system: 3.0) unifi es a robust real-time operating system, a powerful ® Integrated Development Environment (IDE), fl exible middleware VxWorks 6.0 solutions, training to jump-start your development, and VxWorks is the most established and most widely deployed device Professional Services when you need them to extend your software operating system. Its performance, scalability, and capabilities. footprint make more than 300 million devices worldwide run faster s 02 and more reliably. fy 05 WIND RIVER GENERAL PURPOSE PLATFORM 3.0, The next generation of VxWorks adds powerful new features and VXWORKS EDITION COMPONENTS: a focus on openness, performance, reliability and interoperability. VxWorks 6.0 A new release of Wind River’s industry-leading real-time With VxWorks 6.0 companies can: operating system. • Optimize developer productivity through open standards Wind River Workbench 2.2 • Increase reliability through MMU-based memory protection A new release of Wind River’s fully integrated IDE. • Accelerate time-to-market through enhanced error management Middleware • Seamlessly migrate existing VxWorks-based IP and other Powerful capabilities to support fl ash fi le systems, distributed existing IP, including open source message passing and shared backplane memory. • Continue to deliver products that rely on the core attributes of VxWorks, including high performance, reliability, determinism, low latency and scalability IDE Complementary solution elements include an integrated development environment (Wind River Workbench), broad middleware availability, broad processor and Board Support Package (BSP) availability, Wind River Services support, legions of experienced VxWorks developers and an expansive ecosystem Middleware Distributed Messaging* of tools, hardware, middleware and application providers. Compatibility OS One of the important goals of VxWorks 6.0 was to ease the migration from VxWorks 5.5 to VxWorks 6.0. To that end, the kernel of VxWorks 6.0 completely supports the VxWorks 5.5 kernel operating environment. Any BSPs, drivers, and kernel *Available in a later release General Purpose Platform product note applications developed for or ported to VxWorks 5.5 will run in Real-Time Processes enables fl exibility to use objects that the VxWorks 6.0 kernel, with only a recompilation required. By are protected from manipulation, or that can easily be shared default, the VxWorks 6.0 kernel builds as that of VxWorks 5.5. among kernel and process tasks • Extensible system call interface enables application A set of migration guides provided in the product RTP 2 Task Task � Task developers to employ documentation describe RTP 2 Code custom-developed kernel • Migrating BSPs and drivers Heap services from user-mode execution • Migrating VxWorks 5.5 kernel apps to the VxWorks 6.0 kernel RTP 1 � and to user-mode Task Task Task • Support for shared libraries RTP 1 Code among Real-Time Processes • Migrating VxWorks AE applications to VxWorks 6.0 user- Heap improves code effi ciency mode and reusability, also enabling • Migrating from Tornado and SNiFF+ tools to Wind River VxWorks Kernel Environment faster code development and Workbench 2.2 Sem A Sem B Msg Q Task Task Task Heap Manager debugging App A App B App C App D Driver1 Driver2 In addition, VxWorks 6.0 provides increased support for open Code Code Code Code VxWorks OS Modules standards. This promotes compatibility between open source VxWorks BSP Message Channels applications and VxWorks 6.0. With memory protection • Increased POSIX compliance enhances ease of porting open comes the challenge of segmentation of applications into source and 3rd party software to VxWorks protected memory spaces. Message Channels are a new, • Standard process-based programming model reduces the connection-orientated, bi-directional messaging mechanism that learning curve for programming new applications on VxWorks allows tasks to communicate across memory boundaries and s 02 6.0 complement traditional communication mechanisms provided in VxWorks. fy 05 • Support for IPv6 enables development of the next generation of networked devices Tasks located in different processes or in the kernel can establish • Standard sockets-based and modular message channels connections with each other independent of their location. provide a common communication interface Communication can take place between one task in a process and another in the kernel, or between tasks in separate processes, or State-of-the-art memory protection between tasks in the same process. Message Channels are VxWorks 6.0 enables manufacturers to increase their device designed for extension to multi-processor use in a future VxWorks reliability through MMU-based memory protection. VxWorks release. introduces process-based, user-mode application execution in addition to VxWorks’ traditional kernel-mode execution. The Wind River Network Stack kernel is protected from user-mode applications running in VxWorks Real-Time Processes (RTPs). These are also protected The dual-mode IPv4/IPv6 Network Stack is an integral part of from each other. VxWorks 6.0. It represents a major overhaul of the VxWorks default network protocol stack aimed at introducing a stronger Memory protection features: separation between the kernel and the network applications, as • MMU-based memory protection provides isolation of kernel well as supporting the new VxWorks 6.0 application environment from user-mode applications and of applications from each with full backward compatibility to previous releases. other, increasing device reliability Wind River Network Stack fully utilizes new OS functionalities and • Standard, process-based programming model simplifi es application development also supports an enhanced TCP/IP protocol stack with support for both IPv4 and IPv6 protocol suites. High performance and • Support of Real-Time Processes on MMU-less processors scalability are two key elements of this stack. The dual IPv4/IPv6 reduces device cost by enabling use of low-cost processors network stack is based on a port of the KAME/FreeBSD TCP/IP • The ability to use RTPs with the MMU enabled during release. development and with the MMU disabled during deployment speeds development and maximizes device performance • VxWorks preemptive, priority-based global task scheduler ensures real-time deterministic behavior • Ability to create private or public objects in the kernel and in General Purpose Platform product note Wind River has invested signifi cant effort and engineering Memory management resources into optimizing the TCP/IP stack for typical constraints Though VxWorks 6.0 provides MMU-enabled memory protection, found in device software environments. Optimizations include it continues to utilize the non-overlapped address space that improved memory management and effi cient timer capabilities. has been used in all earlier versions of VxWorks. The non- The implementation of certain heuristics further improves the overlapped memory model promotes backward compatibility with reliability of the network stack. In addition, Wind River Network legacy VxWorks code, and it provides the following benefi ts: Stack has a clean code structure for easy integration and faster implementation. Extensive RTP 2 Task Task testing against third-party test • High determinism and low latency are maintained by not suites and external test lab requiring memory to be mapped in or out, and also by not validation ensures high quality, standards conformance and requiring unnecessary cache fl ushes RTP 1 interoperability. • Address pointers are unique, enabling re-use of existing VxWorks drivers and applications, and simplifying new driver Wind River Network Reply Fire & Forget Reply and application development Stack 2.0 key benefits: • Support for both MMU-enabled and MMU-less processors • Clear and structured code gives device manufacturers more fl exibility to choose for ease of confi guration processors to fi t capability and budget requirements and maintenance • Memory translation tables are not required, saving memory • Flexible confi guration Async Send Block until Reply space and improving memory access performance options to optimize VxWorks Kernel Environment required memory Other VxWorks 6.0 memory management enhancements include: resources • Automatic resource reclamation forts, to maximize memory • Full integration with the VxWorks 6.0 operating system, availability and help prevent memory leaks, improving device Wind River Workbench, device management products and robustness s 02 peripheral networking protocols and utilities fy 05 • Improved memory allocation uses “best-fi t” algorithm to • IPv6-enhanced utilities and applications with extensive quality reduce memory fragmentation and increase memory and interoperability testing: IPv6 Forum-approved as “IPv6 allocation performance Ready” • User-mode heap and memory partition support, to enable Wind River Network Stack 2.0 supports: RTPs and user-mode execution • IPv4/IPv6 dual stack implementation • Developer-replaceable user-mode heap allocator, to • Several IPv4 and IPv6 applications running on one or multiple maximize system design fl exibility RTPs • Heap instrumentation for heaps and memory partitions in • Remote Procedure Call (RPC) Protocol, Version 2 both the kernel and RTPs, to assist in diagnosing common memory problems by detecting and reporting memory errors • Remote fi le access protocols
Recommended publications
  • Wind River Vxworks Platforms 3.8
    Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................
    [Show full text]
  • Vxworks Architecture Supplement, 6.2
    VxWorks Architecture Supplement VxWorks® ARCHITECTURE SUPPLEMENT 6.2 Copyright © 2005 Wind River Systems, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the prior written permission of Wind River Systems, Inc. Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. Any third-party trademarks referenced are the property of their respective owners. For further information regarding Wind River trademarks, please see: http://www.windriver.com/company/terms/trademark.html This product may include software licensed to Wind River by third parties. Relevant notices (if any) are provided in your product installation at the following location: installDir/product_name/3rd_party_licensor_notice.pdf. Wind River may refer to third-party documentation by listing publications or providing links to third-party Web sites for informational purposes. Wind River accepts no responsibility for the information provided in such third-party documentation. Corporate Headquarters Wind River Systems, Inc. 500 Wind River Way Alameda, CA 94501-1153 U.S.A. toll free (U.S.): (800) 545-WIND telephone: (510) 748-4100 facsimile: (510) 749-2010 For additional contact information, please visit the Wind River URL: http://www.windriver.com For information on how to contact Customer Support, please visit the following URL: http://www.windriver.com/support VxWorks Architecture Supplement, 6.2 11 Oct 05 Part #: DOC-15660-ND-00 Contents 1 Introduction
    [Show full text]
  • MIPS IV Instruction Set
    MIPS IV Instruction Set Revision 3.2 September, 1995 Charles Price MIPS Technologies, Inc. All Right Reserved RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and / or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor / manufacturer is MIPS Technologies, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. R2000, R3000, R6000, R4000, R4400, R4200, R8000, R4300 and R10000 are trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of MIPS Technologies, Inc. The information in this document is preliminary and subject to change without notice. MIPS Technologies, Inc. (MTI) reserves the right to change any portion of the product described herein to improve function or design. MTI does not assume liability arising out of the application or use of any product or circuit described herein. Information on MIPS products is available electronically: (a) Through the World Wide Web. Point your WWW client to: http://www.mips.com (b) Through ftp from the internet site “sgigate.sgi.com”. Login as “ftp” or “anonymous” and then cd to the directory “pub/doc”. (c) Through an automated FAX service: Inside the USA toll free: (800) 446-6477 (800-IGO-MIPS) Outside the USA: (415) 688-4321 (call from a FAX machine) MIPS Technologies, Inc.
    [Show full text]
  • Using Virtualization to Implement a Scalable Trusted Execution Environment in Secure Socs
    Using Virtualization to Implement a Scalable Trusted Execution Environment in Secure SoCs Document Number: MD00993 Revision 01.00 December 3, 2012 Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’ affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE) reserve the right to change the information contained in this document to improve function, design or otherwise. MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.
    [Show full text]
  • RISC-V Geneology
    RISC-V Geneology Tony Chen David A. Patterson Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-6 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-6.html January 24, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Introduction RISC-V is an open instruction set designed along RISC principles developed originally at UC Berkeley1 and is now set to become an open industry standard under the governance of the RISC-V Foundation (www.riscv.org). Since the instruction set architecture (ISA) is unrestricted, organizations can share implementations as well as open source compilers and operating systems. Designed for use in custom systems on a chip, RISC-V consists of a base set of instructions called RV32I along with optional extensions for multiply and divide (RV32M), atomic operations (RV32A), single-precision floating point (RV32F), and double-precision floating point (RV32D). The base and these four extensions are collectively called RV32G. This report discusses the historical precedents of RV32G. We look at 18 prior instruction set architectures, chosen primarily from earlier UC Berkeley RISC architectures and major proprietary RISC instruction sets. Among the 122 instructions in RV32G: ● 6 instructions do not have precedents among the selected instruction sets, ● 98 instructions of the 116 with precedents appear in at least three different instruction sets.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • MIPS SDE 6.X Programmers' Guide
    TECHNOLOGIES MIPS® SDE 6.x Programmers’ Guide Document Number: MD00428 Revision 1.17 April 4, 2007 MIPS Technologies, Inc 1225 Charleston Road Mountain View,CA94043-1353 Copyright © 1995-2007 MIPS Technologies, Inc. All rights reserved. Copyright © 1995-2007 MIPS Technologies, Inc. All rights reserved. Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Technologies, Inc. (‘‘MIPS Technologies’’). Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Anydocument provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to anyand all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAYADOCUMENT PROVIDED IN SOURCE FORMATBEDISTRIBUTED TOATHIRD PARTY IN SOURCE FORMATWITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC. MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does not assume anyliability arising out of the application or use of this information, or of anyerror or omission in such information. Anywarranties, whether express, statutory,implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in anywritten license agreement from MIPS Technologies or an authorized third party,the furnishing of this document does not give recipient anylicense to anyintellectual property rights, including anypatent rights, that coverthe information in this document.
    [Show full text]
  • Low-Power High Performance Computing
    Low-Power High Performance Computing Panagiotis Kritikakos August 16, 2011 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2011 Abstract The emerging development of computer systems to be used for HPC require a change in the architecture for processors. New design approaches and technologies need to be embraced by the HPC community for making a case for new approaches in system design for making it possible to be used for Exascale Supercomputers within the next two decades, as well as to reduce the CO2 emissions of supercomputers and scientific clusters, leading to greener computing. Power is listed as one of the most important issues and constraint for future Exascale systems. In this project we build a hybrid cluster, investigating, measuring and evaluating the performance of low-power CPUs, such as Intel Atom and ARM (Marvell 88F6281) against commodity Intel Xeon CPU that can be found within standard HPC and data-center clusters. Three main factors are considered: computational performance and efficiency, power efficiency and porting effort. Contents 1 Introduction 1 1.1 Report organisation . 2 2 Background 3 2.1 RISC versus CISC . 3 2.2 HPC Architectures . 4 2.2.1 System architectures . 4 2.2.2 Memory architectures . 5 2.3 Power issues in modern HPC systems . 9 2.4 Energy and application efficiency . 10 3 Literature review 12 3.1 Green500 . 12 3.2 Supercomputing in Small Spaces (SSS) . 12 3.3 The AppleTV Cluster . 13 3.4 Sony Playstation 3 Cluster . 13 3.5 Microsoft XBox Cluster . 14 3.6 IBM BlueGene/Q .
    [Show full text]
  • Proaptiv: Efficient Performance on a Fully-Synthesizable Core
    proAptiv: Efficient Performance on a Fully-Synthesizable Core 28 August 2012 Ranganathan “Suds” Sudhakar Chief Architect 1 © 2012 MIPS Technologies, Inc. All rights reserved. Aptiv Family Highlights Three new cores optimized for embedded markets 2 © 2012 MIPS Technologies, Inc. All rights reserved. Aptiv Core Portfolio Classic MIPS Products Aptiv™ Generation Family Single-Threaded 1 to 6 core configs, Area Optimized Hi-speed FPU and MP version L2 cache controller 1074K Series 74K Series Out of Order Dual issue Family Multi-Threaded MP version Power Optimized 1 to 4 core configs, 1004K 2-level MT/FPU and Series L2 cache controller 34K Series 24K/24KE Multi-threading Series 9-stage pipeline 8-stage pipeline Family DSP-Accelerated M14K/c MCU (cacheless) or Energy Optimized M4K/4KE Series Series MPU (caches/TLBs) with real-time/security Code compression 4 stage pipeline 5 stage pipeline 3 © 2012 MIPS Technologies, Inc. All rights reserved. What is a “Soft” Core? Fully synthesizable “package” . Design data • RTL • Configurator – MP/MT, FPU, Trace/Debug, cache/TLB/SPRAM/buffer sizes, bus widths . Physical design support • Reference floorplans, Synthesis + Place-and-Route scripts • DFT/Scan, Timing and Power Analysis scripts . Simulation models • Bus Functional Models and compliance checkers • Instruction accurate simulators, Cycle exact simulators . Verification collateral • Architectural Verification Test suites, core diagnostics • Sample testbench, build and run scripts . Documentation • ISA manuals, global configuration register tables, memory maps, boot procedures • Implementer’s Guide, Integrator’s Guide, Hardware/Software User manuals Available separately . FPGA development boards . EJTAG/debug probes . OS components, libraries, software toolchains (compiler, libraries, JITs, codecs) 4 © 2012 MIPS Technologies, Inc.
    [Show full text]
  • MIPS® Architecture for Programmers Volume II-A: the MIPS64® Instruction
    MIPS® Architecture For Programmers Volume II-A: The MIPS64® Instruction Set Document Number: MD00087 Revision 5.04 December 11, 2013 Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’ affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE) reserve the right to change the information contained in this document to improve function, design or otherwise. MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.
    [Show full text]
  • MIPS® SDE 6.X Programmer's Guide
    MIPS® SDE 6.x Programmer’s Guide Document Number: MD00428 Revision 01.18 April 11, 2008 MIPS Technologies, Inc. 1225 Charleston Road Mountain View, CA 94043-1353 Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved. Copyright © 2000-2008 MIPS Technologies, Inc. All rights reserved. Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries. This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC. MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
    [Show full text]
  • An Illustration of the Benefits of the MIPS® R12000® Microprocessor
    An Illustration of the Benefits of the MIPS® R12000® Microprocessor and OCTANETM System Architecture Ian Williams White Paper An Illustration of the Benefits of the MIPS® R12000® Microprocessor and OCTANETM System Architecture Ian Williams Overview In comparison with other contemporary microprocessors, many running at significantly higher clock rates, the MIPS R10000® demonstrates competitive performance, particularly when coupled with the OCTANE system architecture, which fully exploits the microprocessor’s capabilities. As part of Silicon Graphics’ commitment to deliver industry-leading application performance through advanced technology, the OCTANE platform now incorporates both system architectural improvements and a new- generation MIPS microprocessor, R12000. This paper discusses the developments in the MIPS R12000 microprocessor design and describes the application performance improvements available from the combina- tion of the microprocessor itself and OCTANE system architecture updates. Table of Contents 1. Introduction—OCTANE in the Current Competitive Landscape Summarizes the performance of OCTANE relative to current key competitive systems and micropro- cessors, highlighting MIPS R10000 strengths and weaknesses. 2. Advantages of MIPS R10000 and MIPS R12000 Microprocessors 2. 1 Architectural Features of the MIPS R10000 Microprocessor Describes the MIPS R10000 microprocessor’s strengths in detail. 2.2 Architectural Improvements of the MIPS R12000 Microprocessor Discusses the developments in the MIPS R12000 microprocessor to improve performance. 3. OCTANE System Architecture Improvements Describes the changes made to the OCTANE system architecture to complement the MIPS R12000 microprocessor. 4. Benefits of MIPS R12000 and OCTANE Architectural Changes on Application Performance Through a real customer test, shows in detail how the features described in the two previous sections translate to application performance.
    [Show full text]