Tachinidae (Diptera) Reared from Ropalidia Nests (Hymenoptera: Vespidae) from Madagascar, with Two New Species of Anacamptomyia Theo Zeegers

Total Page:16

File Type:pdf, Size:1020Kb

Tachinidae (Diptera) Reared from Ropalidia Nests (Hymenoptera: Vespidae) from Madagascar, with Two New Species of Anacamptomyia Theo Zeegers Tijdschrift voor Entomologie 157 (2014) 95–103 brill.com/tve Tachinidae (Diptera) reared from Ropalidia nests (Hymenoptera: Vespidae) from Madagascar, with two new species of Anacamptomyia Theo Zeegers This paper deals with the Tachinidae reared from Ropalidia nests collected on Madagascar. The material belongs to two genera, Anacamptomyia and Parapales,each represented by two species. Both species of Anacamptomyia are described as new: A. aurifrons sp. n. and A. blommersi sp. n. Their relation to the species from the Afrotropical mainland is discussed. The host records for Parapales are the first for this genus, supporting their placement in the Anacamptomyia group. Keywords: Diptera, Tachinidae, hosts, Ropalidia, Madagascar. Theo Zeegers, Eikenlaan 24, 3768 EV Soest, the Netherlands. [email protected] Introduction Symmorphus Wesmael, 1836. However Hamanishi Tachinidae is one of the families of Diptera with the (1996) proved the actual host to be not Symmorphus, highest number of genera and species (Ziegler 2003, but beetle larvae preyed by Symmorphus. O’Hara 2012, 2013). Tachinid flies are well known Crosskey (1976) placed the genera Anacampto- for their biology. The larvae develop as parasitoids myia, Koralliomyia and Euvespivora in a separate tribe in insects and in a few other arthropods, caterpillars Anacamptomyiini, apparently considering them to of Lepidoptera being the most numerous (Herting constitute a monophyletic group. Mesnil (1977) 1960, Ferrar 1987). The ecology and evolutionary added Parapales to this tribe. Because the monophyly history of the family haven been reviewed by Stire- of this tribe needs substantiation, I here refer to this man et al. (2006). Our knowledge of the phylogeny group as the Anacamptomyia group. Mesnil (1977) of the family has been improved by the usage of added the genus Parapales Mesnil, 1950 to this group recent molecular techniques (Cerretti et al. 2014). without knowledge of its host. Some Tachinidae are of economic importance, since During his visits to Madagascar in the years 1970– their hosts are considered pests (O’Hara 2007). 1973, Leo Blommers made an extensive study of Vespidae, or more general Hymenoptera Aculeata, the nests of vespid wasps belonging to the genus are exceptional as host for Tachinidae (Ferrar 1987). Ropalidia Guérin-Méneville (Blommers 2012). In Vespidae have been recorded as host for only five of this process, he reared several Tachinidae belonging the 1519 currently recognized genera of Tachinidae to two genera: Anacamptomyia and Parapales.This (O’Hara 2012): Anacamptomyia Bischof, 1904, Eu- contribution aims to describe the Tachinidae reared vespivora Baranov, 1942, Koralliomyia Mesnil, 1950 by Blommers from Ropalidia nests from Madagascar. in the Old World (Crosskey 1973, 1976, 1984, In the genus Anacamptomyia, two different species Wood & Zumbado 2010) and Lixophaga Townsend, have been found, both described as new here. Also in 1908 and Ophirion Townsend, 1911 in the New the genus Parapales, two species have been found. World (Curran 1937, Wood 1985). Mesnil & Shima (1977) reared Symmorphomyia from the nests of Tijdschrift voor Entomologie 157: 95–103, Figs 1–8. [ISSN 0040-7496]. brill.com/tve © Nederlandse Entomologische Vereniging. Published by Koninklijke Brill NV, Leiden. Published 20 November 2014. DOI 10.1163/22119434-00002041 Downloaded from Brill.com09/29/2021 10:10:07PM via free access 96 Tijdschrift voor Entomologie, volume 157, 2014 Material and methods the flat occiput without black hairs posterior to pos- Backgrounds on hosts, nests and collecting tech- tocular row, the large calypter with angular inner niques have been extensively described by Blom- margin, the crossed erect apical scutellar setae and mers (2012). In summary, he collected many nests the presence in the male of a pair of patches of spe- of Ropalidia on Madagascar in the period 1970– cialized setae on the ventral side of both abdominal 1975. He killed the wasps with a short exposure of tergites 3 and 4 and the presence of the regular comb ethyl acetate, thus deliberately leaving the present of anterodorsal setae on the hind tibia. With the ex- pupae alive. He kept the nest to see if any more ception of the males of Parapales, the frontal setae are wasps or parasitoids would emerge. In this process, mostly reclinate and thus not well separated from the he reared some Tachinidae. Blommers (2012) men- reclinate orbital setae. tioned those belonging to the genus Other material, Mesnil (1977) provides a key to separate the two belonging to the genus Parapales, became available genera. Based on the material studied here, his key after Blommers’ manuscript was accepted for pub- needs to be revised, given the variability of some lication, therefore, it was not mentioned in Blom- features. To separate both genera, I propose the mers (2012). The nests from which the Parapales following key. have been reared, though, are discussed. Strictly speaking, Blommers (2012) did not estab- lish Ropalidia as host; he merely reared the tachinid Key to genera of Afrotropical flies from the hosts nests. Anacamptomyia group The terminology for the body parts used follows 1. Frontal setae and reclinate orbital setae Tschorsnig & Richter (1998) and Merz & Haenni irregularly placed in several rows. Genal (1998). Photos of the habitus of flies have been dilation reduced, consisting of 1–3 rows taken with a Nikon 105 mm macro lens with macro of hairs. Proepimeral seta absent. Synter- flashes; the results have been digitally enhanced. gite 1 + 2 with a pair of strong marginal Photos of heads have been made by using a separate setae. Male: Outer vertical seta present . phototube on the stereomicroscope. Focal depth has ...........................Anacamptomyia been enhanced by stacking several images using the – Frontal setae and reclinate orbital setae software program CombineZ (Hadley). placed in one row. Genal dilation well de- The acronyms for collections follow Evenhuis veloped, with about 6 rows of hairs present. (2012), repeated here for convenience. Proepimeral seta present, though small. CNC = Canada, Ontario, Ottawa, Canadian Syntergite 1 + 2 without differentiated National Collection of Insects; marginal setae. Male: Outer vertical seta ab- CTZS = Private collection Th. Zeegers, Soest, sentorhair-like...................Parapales the Netherlands; MNHN = France, Paris, Muséum National d’Histoire Naturelle; Genus Anacamptomyia Bischof, 1904 MZUR = Italy, Roma, Museo di Zoologia, Uni- Anacamptomyia Bischof, 1904: 79. Type species: versità degli Studi di Roma “La Anacamptomyia africana Bischof, 1904, by mono- Sapienza”; typy; Mesnil 1950b: 22–24 [key to Afrotropical NMW = Austria, Wien, Naturhistorisches species]. Museum Wien; Roubaudia Villeneuve, 1910: 249. Type species: RMNH = Netherlands, Leiden, Naturalis Bio- Roubaudia rufescens Villeneuve, 1910, by origi- diversity Center. nal designation; Mesnil 1950b: 22 [as synonym]; Holotypes and some paratypes of both sexes of the Mesnil 1977: 190 [as valid genus]. new species have been deposited in RMNH. Pararoubaudia Roubaud & Villeneuve, 1914: 124; as On the variant names and spellings for cities on subgenus of Roubaudia. Type species: Roubaudia Madagascar, consult Blommers (2012): 135. (Pararoubaudia) bisetosa Roubaud & Villeneuve, 1914, by monotypy; Mesnil 1950b: 22 [as syn- onym]. Results The material found belongs to two genera: Anacamp- Remarks. The genus Anacamptomyia differs from tomyia and Parapales. These genera are the members most other Tachinidae by its broad fronto-orbital of the Anacamptomyia group in the Afrotropical re- plate and very narrow frontal vitta. These features gion (Mesnil 1977). They share many features, such are seen in other genera of the Anacamptomyia group as the reduced or absent ocellar seta, a row of strong as well. The genus occurs in the Afrotropical and setae covering the facial ridge for most of its length, the Australian region (O’Hara 2012). Seven species Downloaded from Brill.com09/29/2021 10:10:07PM via free access Zeegers: Tachinidae reared from Ropalidia nests from Madagascar 97 have been described from the Afrotropical region frontal orbital plate descending downwards (Crosskey 1980, Zeegers 2007). The latest full re- beyond on parafacial below lowest frontal view is by Mesnil (1950b). From Madagascar, only seta. Wing: base of vein R4+5 above with A. africana has previously been recorded (Crosskey only 1 setula. Male: proclinate orbital seta 1980). This study reports two new species from absent.[Afrotropicalmainland].......... Madagascar, both closely related to A. africana.The .....................africana Bischof, 1904 old records of A. africana from Madagascar might – Mid tibia with 1 very strong anterodor- refer to one of these species. Therefore, the literature sal seta only. Hairs on frontal orbital records need to be reevaluated. plate scarce, not descending downwards on Mesnil (1977) defines the genus Roubaudia based parafacial below lowest frontal seta. Wing: on the presence of median discal setae on abdomi- base of vein R4+5 above usually with 2–3 nal tergites, though Mesnil (1950b) cited it in syn- setulae. Male: at least 2 pairs of strong pro- onymy with Anacamptomyia. This synonymy is fol- clinate orbital setae present [Madagascar] lowed by Crosskey (1980, 1984) and O’Hara (2012). .....................................→ 4 Zeegers (2007) described a species of Anacamptomyia 4. Fronto-orbital plate ochraceously yellow. in which median discal setae are either present or ab- First flagellomere yellow,
Recommended publications
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • Diptera: Cyclorrhapha)
    International Journal of Molecular Sciences Article Mitochondrial Genomes Provide Insights into the Phylogeny of Lauxanioidea (Diptera: Cyclorrhapha) Xuankun Li 1,†, Wenliang Li 2,†, Shuangmei Ding 1, Stephen L. Cameron 3, Meng Mao 4, Li Shi 5,* and Ding Yang 1,* 1 Department of Entomology, China Agricultural University, Beijing 100193, China; [email protected] (X.L.); [email protected] (S.D.) 2 College of Forestry, Henan University of Science and Technology, Luoyang 471023, China; [email protected] 3 Department of Entomology, Purdue University, West Lafayette, IN 47907, USA; [email protected] 4 Department of Plant and Environmental Protection Science, University of Hawaii at Manoa, Honolulu, HI 96822, USA; [email protected] 5 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010018, China * Correspondences: [email protected] (L.S.); [email protected] (D.Y.); Tel.: +86-471-431-7421 (L.S.); +86-10-6273-2999 (D.Y.) † These authors contributed equally to this work. Academic Editor: Kun Yan Zhu Received: 26 January 2017; Accepted: 1 April 2017; Published: 14 April 2017 Abstract: The superfamily Lauxanioidea is a significant dipteran clade including over 2500 known species in three families: Lauxaniidae, Celyphidae and Chamaemyiidae. We sequenced the first five (three complete and two partial) lauxanioid mitochondrial (mt) genomes, and used them to reconstruct the phylogeny of this group. The lauxanioid mt genomes are typical of the Diptera, containing all 37 genes usually present in bilaterian animals. A total of three conserved intergenic sequences have been reported across the Cyclorrhapha. The inferred secondary structure of 22 tRNAs suggested five substitution patterns among the Cyclorrhapha.
    [Show full text]
  • Taxonomy and Systematics of the Australian Sarcophaga S.L. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong Recommended Citation Meiklejohn, Kelly Ann, Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae), Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2012. http://ro.uow.edu.au/theses/3729 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) A thesis submitted in fulfillment of the requirements for the award of the degree Doctor of Philosophy from University of Wollongong by Kelly Ann Meiklejohn BBiotech (Adv, Hons) School of Biological Sciences 2012 Thesis Certification I, Kelly Ann Meiklejohn declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Kelly Ann Meiklejohn 31st of August 2012 ii Table of Contents List of Figures ..................................................................................................................................................
    [Show full text]
  • Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
    Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst.
    [Show full text]
  • Diptera: Oestroidea) Magdi S
    El-Hawagry Egyptian Journal of Biological Pest Control (2018) 28:46 Egyptian Journal of https://doi.org/10.1186/s41938-018-0042-3 Biological Pest Control RESEARCH Open Access Catalogue of the Tachinidae of Egypt (Diptera: Oestroidea) Magdi S. El-Hawagry Abstract Tachinid flies are an important group of parasitoids in their larval stage, and all their hosts are of the Arthropoda, almost exclusively other insects, including important insect pests in agriculture and forestry. All known Egyptian taxa of the family Tachinidae are systematically catalogued. Synonymies, type localities, type depositories, world distributions by biogeographic realm(s) and country, Egyptian localities, and dates of collection are provided. A total of 72 tachinid species belonging to 42 genera, 15 tribes, and 4 subfamilies has been treated. Keywords: Tachinid flies, Egyptian taxa, World distribution, Egyptian localities, Dates of collection Background agriculture and forestry. They typically parasitize phytopha- Tachinidae are a large and cosmopolitan family of flies gous larvae of Lepidoptera and Coleoptera or nymphs of within the superfamily Oestroidea. It is the second largest Hemiptera and Orthoptera. Consequently, tachinid flies family in the order Diptera (Irwin et al. 2003), with some have been successfully applied in programs of biological 1500 recognized genera (O’Hara 2016) and more than control against different insect pests (Stireman et al. 2006; 8500 described species (O’Hara 2013) worldwide. How- O’Hara 2008 and Cerretti and Tschorsnig 2010). ever, the estimated true diversity of the family is probably No comprehensive taxonomic studies on the family double the number of the currently known species, mak- Tachinidae have been carried out in Egypt before.
    [Show full text]
  • View the PDF File of the Tachinid Times, Issue 12
    The Tachinid Times ISSUE 12 February 1999 Jim O’Hara, editor Agriculture & Agri-Food Canada, Biological Resources Program Eastern Cereal and Oilseed Research Centre C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] The Tachinid Times began in 1988 when personal Evolution of Egg Structure in Tachinidae (by S.P. computers were gaining in popularity, yet before the Gaponov) advent of e-mail and the World Wide Web. A newsletter Using a scanning electron microscope I investigated distributed through the mail seemed like a useful the egg structure of 114 species of Tachinidae. The endeavour to foster greater awareness about the work of research was focused on the peculiarities of the egg others among researchers interested in the Tachinidae. surface and the structure of the aeropylar area. Data on Now, eleven years later, despite the speed and the method of egg-laying, the structure of the female convenience of e-mail and other advanced modes of reproductive system and the host range were also taken communication, this newsletter still seems to hold a place into consideration. Since any kind of adaptation is a in the distribution of news about the Tachinidae. If there result of evolution and every stage of ontogenesis, is sufficient interest - and submissions - over the course including the egg stage, is adapted to some specific of the next year, then another issue will appear in environmental conditions, each stage of ontogenesis February of the new millennium. As always, please send evolved more or less independently. The development of me your news for inclusion in the newsletter before the provisionary devices (coenogenetic adaptations) and their end of next January.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • Parasitism and Migration in Southern Palaearctic Populations of the Painted Lady Butterfly, Vanessa Cardui (Lepidoptera: Nymphalidae)
    Eur. J. Entomol. 109: 85–94, 2012 http://www.eje.cz/scripts/viewabstract.php?abstract=1683 ISSN 1210-5759 (print), 1802-8829 (online) Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae) CONSTANTÍ STEFANESCU 1, 2, RICHARD R. ASKEW 3,JORDI CORBERA4 and MARK R. SHAW 5 1 Butterfly Monitoring Scheme, Museu de Granollers-Ciències Naturals, Francesc Macià, 51, Granollers, E-08402, Spain; e-mail: [email protected] 2Global Ecology Unit, CREAF-CEAB-CSIC, Edifici C, Campus de Bellaterra, Bellaterra, E-08193, Spain 3 Beeston Hall Mews, Tarporley, Cheshire, CW6 9TZ, England, UK 4 Secció de Ciències Naturals, Museu de Mataró, El Carreró 17-19, Mataró, E-08301, Spain 5 Honorary Research Associate, National Museums of Scotland, Scotland, UK Key words. Lepidoptera, Nymphalidae, population dynamics, seasonal migration, enemy-free space, primary parasitoids, Cotesia vanessae, secondary parasitoids Abstract. The painted lady butterfly (Vanessa cardui) (Lepidoptera: Nymphalidae: Nymphalinae) is well known for its seasonal long-distance migrations and for its dramatic population fluctuations between years. Although parasitism has occasionally been noted as an important mortality factor for this butterfly, no comprehensive study has quantified and compared its parasitoid com- plexes in different geographical areas or seasons. In 2009, a year when this butterfly was extraordinarily abundant in the western Palaearctic, we assessed the spatial and temporal variation in larval parasitism in central Morocco (late winter and autumn) and north-east Spain (spring and late summer). The primary parasitoids in the complexes comprised a few relatively specialized koinobi- onts that are a regular and important mortality factor in the host populations.
    [Show full text]
  • A Review of Billaea Robineau-Desvoidy of the Eastern Palearctic and Oriental Regions (Diptera: Tachinidae)
    Zootaxa 3949 (1): 001–040 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3949.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:51B3DE82-6661-42D4-9095-84E518E9BDF8 A review of Billaea Robineau-Desvoidy of the eastern Palearctic and Oriental regions (Diptera: Tachinidae) CHUN-TIAN ZHANG1, HIROSHI SHIMA2, QIANG WANG1,3 & HANS-PETER TSCHORSNIG4 1Liaoning Key Laboratory of Evolution and Biodiversity, Shenyang Normal University, Shenyang 110034, China. E-mail: [email protected] 2Kyushu University Museum, Kyushu University, Hakozaki, Fukuoka 812–8581, Japan. E-mail: [email protected] 3College of Life Sciences, Nankai University, Tianjin 300071, China. E-mail: [email protected] 4Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] Table of contents Abstract . 1 Introduction . 2 Material and methods . 2 Taxonomy . 3 Billaea Robineau-Desvoidy, 1830 . 3 Species descriptions. 4 Billaea atkinsoni (Baranov, 1934). 4 Billaea brevicauda Zhang et Shima sp. nov. 6 Billaea carinata Zhang et Shima sp. nov. 7 Billaea chinensis Zhang et Shima sp. nov. 8 Billaea ficorum (Townsend, 1916) . 9 Billaea flava Zhang et Wang sp. nov. 11 Billaea fortis (Rondani, 1862) . 12 Billaea impigra Kolomiets, 1966 . 14 Billaea kolomyetzi Mesnil, 1970 . 14 Billaea kurahashii Zhang et Shima sp. nov. 16 Billaea malayana Malloch, 1929 . 17 Billaea micronychia Zhang et Shima sp. nov. 17 Billaea morosa Mesnil, 1963 . 19 Billaea papei Zhang et Shima sp. nov. 20 Billaea robusta Malloch, 1935 . 21 Billaea setigera Zhang et Shima sp.
    [Show full text]
  • Tachinid Fly (Diptera: Tachinidae) Parasitoids of Danaus Plexippus (Lepidoptera: Nymphalidae)
    Annals of the Entomological Society of America, 2017, 1–9 doi: 10.1093/aesa/sax048 Ecology and Population Biology Research article Tachinid Fly (Diptera: Tachinidae) Parasitoids of Danaus plexippus (Lepidoptera: Nymphalidae) Karen Oberhauser,1,2 Dane Elmquist,3 Juan Manuel Perilla-Lopez, 4 Ilse Gebhard,5 Laura Lukens,1 and John Stireman4 1Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], 3USDA-ARS, Yakima, WA 98902 ([email protected]. gov), 4Department of Biological Sciences, Wright State University, Dayton, OH 45435 ([email protected]; john.stireman@ wright.edu), and 56450 N. 2nd St. Kalamazoo, MI 49009 ([email protected]) Subject Editor: Ann Fraser Received 31 January 2017; Editorial decision 15 May 2017 Abstract Extensive rearing of monarch larvae (Danaus plexippus L.) through the citizen science Monarch Larva Monitoring Project (MLMP) revealed that monarchs’ primary parasitoids are flies in the family Tachinidae and that these parasitoids result in appreciable larval mortality. We document the tachinid community that attacks monarchs in the United States, evaluate their relative frequency, and examine variation in their specificity, ovi- position strategy, and use of host stages. Based on results of rearing >20,000 monarchs by MLMP volunteers, overall parasitism by tachinids across life stages was 9.8% (17% for monarchs collected as fifth instars). We identified the flies that emerged from 466 monarch hosts, and found seven Tachinidae species. In decreasing order of frequency, these included Lespesia archippivora (Riley), Hyphantrophaga virilis (Aldrich & Webber), Compsilura concinnata (Meigen), Leschenaultia n.
    [Show full text]
  • Spillover and Species Interactions Across Habitat Edges Between Managed and Natural Forests
    SPILLOVER AND SPECIES INTERACTIONS ACROSS HABITAT EDGES BETWEEN MANAGED AND NATURAL FORESTS ____________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Canterbury by Carol M. Frost ____________________________________________________ School of Biological Sciences University of Canterbury 2013 Table of Contents Table of Contents………………………………………………………………………...ii List of Tables………………………………………………………………………...…..vi List of Figures…………………………………………………………………………..vii Abstract………………………………………………………………………………...viii Acknowledgements……………………………………………………………………....x Chapter I: Introduction………………………………………………………………….1 1.1 Land-use change as the leading cause of biodiversity loss………………………….1 1.2 Biodiversity conservation versus agricultural production…………………………..2 1.3 Spillover edge effects as a mechanism of change in remnant natural ecosystems….3 1.4 Measuring ecological change: species interactions underlie ecosystem function…..5 1.5 Predicting indirect interactions……………………………………………………...6 1.6 Thesis objectives, study system, and outline………………………………………..9 Chapter II: Community-level spillover of natural enemies.........................................14 2.1 Abstract…………………………………………………………………………….14 2.2 Introduction………………………………………………………………………...15 2.3 Methods…………………………………………………………………………….18 2.3.1 Study system…………………………………………………………………...18 2.3.2 Sampling herbivore abundance and parasitism levels…………………………20 2.3.3 Measuring spillover of natural
    [Show full text]