Title Dead-Twig Discrimination for Oviposition in a Cicada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rapid and Simple Species Identification of Cicada Exuviae
insects Article Rapid and Simple Species Identification of Cicada Exuviae Using COI-Based SCAR Assay Pureum Noh, Wook Jin Kim, Jun-Ho Song , Inkyu Park , Goya Choi and Byeong Cheol Moon * Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; [email protected] (P.N.); [email protected] (W.J.K.); [email protected] (J.-H.S.); [email protected] (I.P.); [email protected] (G.C.) * Correspondence: [email protected]; Tel.: +82-61-338-7100 Received: 5 February 2020; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Cicadidae periostracum (CP), the medicinal name of cicada exuviae, is well-known insect-derived traditional medicine with various pharmacological effects, e.g., anticonvulsive, anti-inflammatory, antitussive, and anticancer effects; it is also beneficial for the treatment of Parkinson’s disease. For appropriate CP application, accurate species identification is essential. The Korean pharmacopoeia and the pharmacopoeia of the People’s Republic of China define Cryptotympana atrata as the only authentic source of CP. Species identification of commercially distributed CP based on morphological features, however, is difficult because of the combined packaging of many cicada exuviae in markets, damage during distribution, and processing into powder form. DNA-based molecular markers are an excellent alternative to morphological detection. In this study, the mitochondrial cytochrome c oxidase subunit I sequences of C. atrata, Meimuna opalifera, Platypleura kaempferi, and Hyalessa maculaticollis were analyzed. On the basis of sequence alignments, we developed sequence-characterized amplified-region (SCAR) markers for efficient species identification. These markers successfully discriminated C. -
Cicadidae (Homoptera) De Nicaragua: Catalogo Ilustrado, Incluyendo Especies Exóticas Del Museo Entomológico De Leon
Rev. Nica. Ent., 72 (2012), Suplemento 2, 138 pp. Cicadidae (Homoptera) de Nicaragua: Catalogo ilustrado, incluyendo especies exóticas del Museo Entomológico de Leon. Por Jean-Michel Maes*, Max Moulds** & Allen F. Sanborn.*** * Museo Entomológico de León, Nicaragua, [email protected] ** Entomology Department, Australian Museum, Sydney, [email protected] *** Department of Biology, Barry University, 11300 NE Second Avenue, Miami Shores, FL 33161-6695USA, [email protected] INDEX Tabla de contenido INTRODUCCION .................................................................................................................. 3 Subfamilia Cicadinae LATREILLE, 1802. ............................................................................ 4 Tribu Zammarini DISTANT, 1905. ....................................................................................... 4 Odopoea diriangani DISTANT, 1881. ............................................................................... 4 Miranha imbellis (WALKER, 1858). ................................................................................. 6 Zammara smaragdina WALKER, 1850. ............................................................................ 9 Tribu Cryptotympanini HANDLIRSCH, 1925. ................................................................... 13 Sub-tribu Cryptotympanaria HANDLIRSCH, 1925. ........................................................... 13 Diceroprocta bicosta (WALKER, 1850). ......................................................................... 13 Diceroprocta -
General-Poster
XXIV International Congress of Entomology General-Poster > 157 Section 1 Taxonomy August 20-22 (Mon-Wed) Presentation Title Code No. Authors_Presenting author PS1M001 Madagascar’s millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae): Taxonomy, phylogenetics and sexual dimorphism Michael Forthman, Christiane Weirauch PS1M002 Phylogenetic reconstruction of the Papilio memnon complex suggests multiple origins of mimetic colour pattern and sexual dimorphism Chia-Hsuan Wei, Matheiu Joron, Shen-HornYen PS1M003 The evolution of host utilization and shelter building behavior in the genus Parapoynx (Lepidoptera: Crambidae: Acentropinae) Ling-Ying Tsai, Chia-Hsuan Wei, Shen-Horn Yen PS1M004 Phylogenetic analysis of the spider mite family Tetranychidae Tomoko Matsuda, Norihide Hinomoto, Maiko Morishita, Yasuki Kitashima, Tetsuo Gotoh PS1M005 A pteromalid (Hymenoptera: Chalcidoidea) parasitizing larvae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) and the fi rst fi nding of the facial pit in Chalcidoidea Kazunori Matsuo, Junichiro Abe, Kanako Atomura, Junichi Yukawa PS1M006 Population genetics of common Palearctic solitary bee Anthophora plumipes (Hymenoptera: Anthophoridae) in whole species areal and result of its recent introduction in the USA Katerina Cerna, Pavel Munclinger, Jakub Straka PS1M007 Multiple nuclear and mitochondrial DNA analyses support a cryptic species complex of the global invasive pest, - Poster General Bemisia tabaci (Gennadius) (Insecta: Hemiptera: Aleyrodidae) Chia-Hung Hsieh, Hurng-Yi Wang, Cheng-Han Chung, -
An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
© Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant. -
WORLD LIST of EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1
WORLD LIST OF EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1 Genus Species Family Order Common names Faunar Distribution & References Remarks life Epeira syn nigra Vinson Nephilidae Araneae Afregion Madagascar (Decary, 1937) Nephilia inaurata stages (Walck.) Nephila inaurata (Walckenaer) Nephilidae Araneae Afr Madagascar (Decary, 1937) Epeira nigra Vinson syn Nephila madagscariensis Vinson Nephilidae Araneae Afr Madagascar (Decary, 1937) Araneae gen. Araneae Afr South Africa Gambia (Bodenheimer 1951) Bostrichidae gen. Bostrichidae Col Afr Congo (DeFoliart 2002) larva Chrysobothris fatalis Harold Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Lampetis wellmani (Kerremans) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) syn Psiloptera larva wellmani Lampetis sp. Buprestidae Col jewel beetle Afr Togo (Tchibozo 2015) as Psiloptera in Tchibozo but this is Neotropical Psiloptera syn wellmani Kerremans Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) Psiloptera is larva Neotropicalsee Lampetis wellmani (Kerremans) Steraspis amplipennis (Fahr.) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Sternocera castanea (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Burkina Faso (Tchinbozo 2015) Sternocera feldspathica White Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) adult Sternocera funebris Boheman syn Buprestidae Col jewel beetle Afr Zimbabwe (Chavanduka, 1976; Gelfand, 1971) see S. orissa adult Sternocera interrupta (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Cameroun (Seignobos et al., 1996) Burkina Faso (Tchimbozo 2015) Sternocera orissa Buquet Buprestidae Col jewel beetle Afr Botswana (Nonaka, 1996), South Africa (Bodenheimer, 1951; syn S. funebris adult Quin, 1959), Zimbabwe (Chavanduka, 1976; Gelfand, 1971; Dube et al 2013) Scarites sp. Carabidae Col ground beetle Afr Angola (Bergier, 1941), Madagascar (Decary, 1937) larva Acanthophorus confinis Laporte de Cast. -
Genera of American Cicadas North of Mexico
GENERA OF AMERICAN CICADAS NORTH OF MEXICO By MAXINE SHOEMAKER HEATH A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY CF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA .1978 , To my family Jim, Cindy, Pam, Jessica ACKNOWLEDGEMENTS Many people have generously contributed time, advice, and information useful in the preparation of this dissertation. I would like to thank Dr. Thomas Moore of the University of Michigan, Dr. George Byers, Dr. Peter Ashlock, and Dr. Charles Michner of the University of Kansas, Dr. Frank Hasbrouck and Mr. Martin Kolner of Arizona State University, Dr. and Mme. Michel Boulard of the Museum National d'Histoire Naturelle, Dr. T. Knight and Dr. Peter Broomfield of the British Museum (Natural History), Mr. Donald Webb of the Illinois Natural History Survey, Dr. Frank Mead of the Florida Division of Plant Industry, and Dr. Jack Cranford of Virginia Polytechnic Institute for their interest, information, access to col- lections, and loans and gifts of cicada specimens. Mrs. Alice Prickett assisted me in the planning of the illustrations. I thank my committee, Professors Reece Sailer, Harvey Cromroy, Lewis Berner, Ellis Matneny, and Frederick King, for continued advice and encouragement. Most of all I would like to thank my family for assistance and sacrifices, especially my husband, James E. Heath, who introduced me to the study of cicadas, and whose continued help and encouragement made this dissertation possible. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii ABSTRACT viii CHAPTER I INTRODUCTION I Life Cycle 4 The Problem 7 II MATERIALS AND METHODS 9 III CLASSIFICATION: HIGHER TAKA 11 Order 11 Suborder 11 Superfamily 11 Family Cicadidae 12 Subfamilies 20 Tribes 22 IV CLASSIFICATION: GENERA 26 V GENERAL MORPHOLOGY 29 General Body Proportions 32 Head . -
Here May Be a Threshold of 8 Mm Above
c 2007 by Daniela Maeda Takiya. All rights reserved. SYSTEMATIC STUDIES ON THE LEAFHOPPER SUBFAMILY CICADELLINAE (HEMIPTERA: CICADELLIDAE) BY DANIELA MAEDA TAKIYA B. Sc., Universidade Federal do Rio de Janeiro, 1998 M. Sc., Universidade Federal do Rio de Janeiro, 2001 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2007 Urbana, Illinois Abstract The leafhopper subfamily Cicadellinae (=sharpshooters) includes approximately 340 genera and over 2,000 species distributed worldwide, but it is most diverse in the Neotropical region. In contrast to the vast majority of leafhoppers (members of the family Cicadellidae), which are specialists on phloem or parenchyma fluids, cicadellines feed on xylem sap. Because xylem sap is such a nutritionally poor diet, xylem specialists must ingest large quantities of sap while feeding. They continuously spurt droplets of liquid excrement, forming the basis for their common name. Specialization on xylem sap also occurs outside the Membracoidea, in members of the related superfamilies Cicadoidea (cicadas) and Cercopoidea (spittlebugs) of the order Hemiptera. Because larger insects with greater cibarial volume are thought to more easily overcome the negative pressure of xylem sap, previous authors suggested that there may be a threshold of 8 mm above which, the energetic cost of feeding is negligible. In chapter 1 the method of phylogenetic contrasts was used to re-investigate the evolution of body size of Hemiptera and test the hypothesis that shifts to xylem feeding were associated with an increase in body size. After correcting for phylogenetic dependence and taking into consideration possible alternative higher-level phylogenetic scenarios, statistical analyses of hemipteran body sizes did not show a significant increase in xylem feeding lineages. -
The Cicada Genus Chremistica Stål (Hemiptera: Cicadidae) in Sundaland
S. YAAKOP 1, J. P. DUFFELS 2 & H. VISSER 2 1 Centre for Insect Systematics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 2 Institute for Biodiversity and Ecosystem Dynamics (Zoological Museum), University of Amsterdam, The Netherlands THE CICADA GENUS CHREMISTICA STÅL (HEMIPTERA: CICADIDAE) IN SUNDALAND Yaakop, S., J. P. Duffels & H. Visser, 2005. The cicada genus Chremistica Stål (Hemiptera: Cicadidae) in Sundaland. – Tijdschrift voor Entomologie 148: 247-306, figs. 1-92, table 1. [ 0040-7496]. Published 1 December 2005. This study presents a revision of the 17 species of the cicada genus Chremistica Stål occurring in Sundaland: Malayan Peninsula, Java, Sumatra and Borneo. Nine species were already known to science: Chremistica biloba Bregman, C. bimaculata (Olivier), C. guamusangensis Salmah & Zaidi, C. kecil Salmah & Zaidi, C. minor Bregman, C. nesiotes Breddin, C. pontianaka (Distant), C. tridentigera (Breddin), and C. umbrosa (Distant). Eight species are new to science: Chremistica borneensis, C. brooksi, C. cetacauda, C. echinaria, C. hollowayi, C. malayensis, C. niasica, and C. sumatrana. The Sundaland species of Chremistica belong to three species groups: the C. pontianaka group, the bimaculata group and the tridentigera group. A key to the species is presented for the identification of the males of Chremistica from Sundaland. The ge- ographical distributions of the species are presented in maps. Correspondence: S. Yaakop, Centre for Insect Systematics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; e-mail: [email protected] Key words. – Chremistica; Cicadidae; taxonomy; new species; key; distribution; Sundaland; South East Asia. The first aim of this paper is to contribute to the Pacific, have already demonstrated that cicadas can be knowledge of cicada biodiversity in Sundaland: the instrumental in recognizing hot spots of species rich- Malayan Peninsula south of the Isthmus of Krah, ness and areas of endemism with unique biota (e.g., Sumatra, Borneo and Java, and the small islands Boer & Duffels 1997). -
The Formation of a Hatching Line in the Serosal Cuticle Confers Multifaceted
Moriyama et al. Zoological Letters (2021) 7:8 https://doi.org/10.1186/s40851-021-00178-8 RESEARCH ARTICLE Open Access The formation of a hatching line in the serosal cuticle confers multifaceted adaptive functions on the eggshell of a cicada Minoru Moriyama1,2* , Kouji Yasuyama3,4 and Hideharu Numata2,5 Abstract Insect eggshells must meet various demands of developing embryos. These demands sometimes conflict with each other; therefore, there are tradeoffs between eggshell properties, such as robustness and permeability. To meet these conflicting demands, particular eggshell structures have evolved in diverse insect species. Here, we report a rare eggshell structure found in the eggshell of a cicada, Cryptotympana facialis. This species has a prolonged egg period with embryonic diapause and a trait of humidity-inducible hatching, which would impose severe demands on the eggshell. We found that in eggs of this species, unlike many other insect eggs, a dedicated cleavage site, known as a hatching line, was formed not in the chorion but in the serosal cuticle. The hatching line was composed of a fine furrow accompanied by ridges on both sides. This furrow-ridge structure formed in the terminal phase of embryogenesis through the partial degradation of an initially thick and nearly flat cuticle layer. We showed that the permeability of the eggshell was low in the diapause stage, when the cuticle was thick, and increased with degradation of the serosal cuticle. We also demonstrated that the force required to cleave the eggshell was reduced after the formation of the hatching line. These results suggest that the establishment of the hatching line on the serosal cuticle enables flexible modification of eggshell properties during embryogenesis, and we predict that it is an adaptation to maximize the protective role of the shell during the long egg period while reducing the barrier to emerging nymphs at the time of hatching. -
Cicada Fossils (Cicadoidea: Tettigarctidae and Cicadidae) with a Review of the Named Fossilised Cicadidae
Zootaxa 4438 (3): 443–470 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4438.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:8AC0F062-C1DC-4E71-84C1-31342933A398 Cicada fossils (Cicadoidea: Tettigarctidae and Cicadidae) with a review of the named fossilised Cicadidae M. S. MOULDS Australian Museum Research Institute, 1 William Street, Sydney N.S.W. 2010. E-mail: [email protected] Abstract The Cicadoidea comprise two families, the Cicadidae and the Tettigarctidae. This paper evaluates the status and taxonomy of all named Cicadoidea fossils belonging to the Cicadidae. Shcherbakov (2009) has previously revised the Tettigarctidae. Two new genera are described, Camuracicada gen. n. and Paleopsalta gen. n., for Camuracicada aichhorni (Heer, 1853) comb. n. and Paleopsalta ungeri (Heer, 1853) comb. n. A lectotype is designated for Cicada emathion Heer, 1853. Cicada grandiosa Scudder, 1892 is transferred to Hadoa Moulds, 2015 as Hadoa grandiosa comb. n.; Oncotympana lapidescens J. Zhang, 1989 is transferred to Hyalessa China, 1925 as Hyalessa lapidescens comb. n.; Meimuna incasa J. Zhang, Sun & X. Zhang, 1994 and Meimuna miocenica J. Zhang & X. Zhang, 1990 are transferred to Cryptotympana Stål, 1861 as Cryptotympana incasa comb. n. and Cryptotympana miocenica comb. n.; Tibicen sp. aff. japonicus Kato, 1925 is transferred to Auritibicen as Auritibicen sp. aff. japonicus comb. n., and Terpnosia sp. aff. vacua Olivier, 1790 is trans- ferred to Yezoterpnosia Matsumura, 1917 as Yezoterpnosia sp. aff. vacua comb. n. The generic placement of two other fossils is changed to reflect current classification, those species now being Auritibicen bihamatus (Motschulsky, 1861) and Yezoterpnosia nigricosta (Motschulsky, 1866). -
(Fabricius, 1775) Cicadas
insects Brief Report First Report of Necrophilia in the Form of Necrocoitus among Insects, Involving Two Male Cryptotympana atrata (Fabricius, 1775) Cicadas Ji-Shen Wang 1 and Victor Benno Meyer-Rochow 2,3,* 1 College of Agriculture and Biological Sciences, Dali University, Dali 671003, China; [email protected] 2 Department of Ecology and Genetics, Oulu University, SF-90140 Oulu, Finland 3 Agricultural Science and Technology Research Institute, Andong National University, Andong GB36729, Korea * Correspondence: [email protected] Simple Summary: It has been reported that members from all vertebrate classes occasionally attempt copulations with dead male or female individuals, but until now no reliable report exists that insects too may show such necrophilic behaviour. We observed and described how a male cicada from Jinxiu town in southern China repeatedly tried to mate with a dead male conspecific. There are several ways to explain this unusual behaviour, but we believe that possibly a lack of females, the somewhat larger than normal size of the dead male individual and the latter’s passivity have been involved. This is the first report of a male insect mounting a dead male and attempting to copulate with it. Abstract: The unusual case of a male Cryptotympana atrata cicada from China attempting to mate with a dead male conspecific is described and illustrated. Although hitherto unreported, necrophilic behaviour in the form of an attempted necrocoitus, involving dead male or female corpses, may not be as isolated a case as has been previously assumed, but it does not seem to have been mentioned earlier in the entomological literature. -
Insecta: Hemiptera: Cicadidae)
MITOCHONDRIAL DNA PART B 2021, VOL. 6, NO. 7, 1883–1885 https://doi.org/10.1080/23802359.2021.1934154 MITOGENOME ANNOUNCEMENT High-throughput sequencing yields a complete mitochondrial genome of the Cryptotympana atrata (Insecta: Hemiptera: Cicadidae) Chenchen Zhao Qufu Normal University Hospital, Qufu Normal University, Qufu, China ABSTRACT ARTICLE HISTORY Cryptotympana atrata is a common insect pest found in forest ecosystem throughout East and South Received 24 February 2021 Asia. In this study, the complete mitochondrial genome of one individual was determined using high- Accepted 17 May 2021 throughput sequencing. The mitogenome is 15,338 bp in length with an A þ T content of 77.9%, and KEYWORDS contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes Mitogenome; (rRNAs), and one control region (CR or D-loop). The gene arrangement and composition is similar to Cryptotympana atrata; high- other published mitogenomes of Cicadidae. The concatenated PCGs were used to conduct Bayesian throughput sequenc- phylogenetic analyses together with several related Cicadidae with mitogenome data in GenBank. ing; phylogeny Phylogenetic analysis shows that two species (C. atrata and C. facialis) and Auritibicen bihamatus were herein corroborated to be the tribe of Cryptotympanini. Our results show the location of genus Cryptotympana in Cicadinae and the location of the subfamily in Cicadidae, and provide data for fur- ther study of phylogeny in Hemiptera. Cicadas (Hemiptera, Cicadidae) are well known for their loud A5-miseq v20150522 (Coil et al. 2015) and SPAdes v3.9.0 calling songs produced by male adults during summer (Bankevich et al. 2012). The gene annotation was performed (Young and Bennet-Clark 1995).