Morphology and Identification of the Final Instar Nymphs of Three Cicadas (Hemiptera, Cicadidae) in Guanzhong Plain, China Based on Comparative Morphometrics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Cicadetta Species in the Montana Complex (Insecta, Hemiptera, Cicadidae)
Zootaxa 1442: 55–68 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Similar look but different song: a new Cicadetta species in the montana complex (Insecta, Hemiptera, Cicadidae) JÉRÔME SUEUR1 & STÉPHANE PUISSANT2 1NAMC-CNRS UMR 8620, Université Paris XI, Bât. 446, 91405 Orsay Cedex, France Present address: Institut de Recherche sur la Biologie de l’Insecte - UMR CNRS 6035, Parc Grandmont, 37200 Tours, France. E-mail: [email protected] 2Muséum national d'Histoire naturelle (Paris), Département Systématique et Evolution, Entomologie, 4 square Saint-Marsal, F-66100 Perpignan, France 1Corresponding author Abstract The Cicadetta montana species complex includes six cicada species from the West-Palaearctic region. Based on acoustic diagnostic characters, a seventh species Cicadetta cantilatrix sp. nov. belonging to the complex is described. The type- locality is in France but the species distribution area extends to Poland, Germany, Switzerland, Austria, Slovenia, Mace- donia and Montenegro. The calling song sequence consists of two phrases with different echemes. This calling pattern clearly differs from those produced by all other members of the complex, including C. cerdaniensis, previously mistaken with the new species. This description increases the acoustic diversity observed within a single cicada genus and sup- ports the hypothesis that sound communication may play a central role in speciation. Key words: Cryptic species, bioacoustics, Cicadidae, Cicadetta, geographic distribution, France Introduction Some biodiversity is not obvious when looking at preserved specimens. Various species do not differ in their morphology, but drastically in their behaviour. Such sibling, or cryptic, species are particularly evident in insects that produce sound to communicate: they look similar but sing differently. -
Biodiversity News Via Email, Or Know of Somebody Who Would, Please Contact Us at [email protected] Summer in This Issue
Biodiversity News Issue 61 Summer Edition Contents - News - Features - Local & Regional - Publications - Events If you would like to receive Biodiversity News via email, or know of somebody who would, please contact us at [email protected] Summer In this issue Editorial 3 Local & Regional Swift Conservation Lifts Off in 20 News Perthshire Saving Hertfordshire‟s dying rivers 21 State of Natural Capital Report 4 – a catchment-based approach Woodland Trust‟s urgent call for 5 Creating a haven for wildlife in West 23 new citizen science recorders Glamorgan Local Nature Partnerships – 1 year 6 on Wildlife boost could help NW 25 Historic result for woodland in 8 economy Northern Ireland First Glencoe sighting for 26 Chequered Skipper Features Bluebells arrive at last 27 Researching Bechstein‟s Bat at 9 Grafton Wood Wales plans a brighter future for 28 Natura 2000 The Natural Talent Apprenticeship 10 scheme Conservation grazing at Marden 11 Publications Park Marine Biodiversity & Ecosystem 30 Where on Earth do British House 13 Functioning Martins go? Updates on implementation of the 31 Large Heath Biodiversity Campaign 14 Natural Environment White Paper British scientists are first to identify 15 Wood Wise: invasive species 31 record-breaking migration flights management in woodland habitats „Cicada Hunt‟ lands on the app 16 markets Events Recent launch of Bee policy review 18 Communicate 2013: Stories for 32 Change Do your bit for the moors 32 Local & Regional Cutting-edge heathland 19 conservation Please note that the views expressed in Biodiversity News are the views of the contributors and do not necessarily reflect the views of the UK Biodiversity Partnership or the organisations they represent. -
Rapid and Simple Species Identification of Cicada Exuviae
insects Article Rapid and Simple Species Identification of Cicada Exuviae Using COI-Based SCAR Assay Pureum Noh, Wook Jin Kim, Jun-Ho Song , Inkyu Park , Goya Choi and Byeong Cheol Moon * Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; [email protected] (P.N.); [email protected] (W.J.K.); [email protected] (J.-H.S.); [email protected] (I.P.); [email protected] (G.C.) * Correspondence: [email protected]; Tel.: +82-61-338-7100 Received: 5 February 2020; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Cicadidae periostracum (CP), the medicinal name of cicada exuviae, is well-known insect-derived traditional medicine with various pharmacological effects, e.g., anticonvulsive, anti-inflammatory, antitussive, and anticancer effects; it is also beneficial for the treatment of Parkinson’s disease. For appropriate CP application, accurate species identification is essential. The Korean pharmacopoeia and the pharmacopoeia of the People’s Republic of China define Cryptotympana atrata as the only authentic source of CP. Species identification of commercially distributed CP based on morphological features, however, is difficult because of the combined packaging of many cicada exuviae in markets, damage during distribution, and processing into powder form. DNA-based molecular markers are an excellent alternative to morphological detection. In this study, the mitochondrial cytochrome c oxidase subunit I sequences of C. atrata, Meimuna opalifera, Platypleura kaempferi, and Hyalessa maculaticollis were analyzed. On the basis of sequence alignments, we developed sequence-characterized amplified-region (SCAR) markers for efficient species identification. These markers successfully discriminated C. -
Supporting Information
Supporting Information Campbell et al. 10.1073/pnas.1421386112 SI Materials and Methods transformed into Escherichia coli JM109 High Efficiency Com- Genome Sequencing. The following amount of data were generated petent Cells. Transformed cells were grown in 3 mL of LB broth at for each sequencing technology: 136,081,956 pairs of 100 × 2 37 °C overnight, and plasmids were purified with E.Z.N.A. plas- short insert Illumina HiSeq reads for about 27 Gb total; 50,884,070 mid DNA mini kit I. The purified plasmids were used as PCR pairs of 100 × 2 large insert HiSeq reads for about 10 Gb total; templates to for further amplification of the probe region. The and 259,593 reads averaging 1600 nt for about 421 Mb total of amplified probes were subject to nick translation (>175 ng/μL PacBio data. DNA, 1× nick-translation buffer, 0.25 mM unlabeled dNTPs, 50 μM labeled dNTPs, 2.3 U/μL DNA polymerase I, 9 mU/μL Genome Annotation. Annotation of Hodgkinia DNA was done Dnase), using either Cy3 (MAGTRE006 and MAGTRE005), or using the phmmer module of HMMER v3.1b1 (1). All ORFs Cy5 (MAGTRE001 and MAGTRE012), and size selected for beginning with a start codon that overlapped a phmmer hit sizes in the range of 100–500 bp using Ampure XP beads. Probes were searched against a database of all Hodgkinia genes using with at least seven incorporated labeled dNTPs per 1,000 nucle- BLASTX 2.2.28+. MAGTRE Hodgkinia genes were considered otides as determined by spectroscopy were used for hybridization. -
Cicadidae (Homoptera) De Nicaragua: Catalogo Ilustrado, Incluyendo Especies Exóticas Del Museo Entomológico De Leon
Rev. Nica. Ent., 72 (2012), Suplemento 2, 138 pp. Cicadidae (Homoptera) de Nicaragua: Catalogo ilustrado, incluyendo especies exóticas del Museo Entomológico de Leon. Por Jean-Michel Maes*, Max Moulds** & Allen F. Sanborn.*** * Museo Entomológico de León, Nicaragua, [email protected] ** Entomology Department, Australian Museum, Sydney, [email protected] *** Department of Biology, Barry University, 11300 NE Second Avenue, Miami Shores, FL 33161-6695USA, [email protected] INDEX Tabla de contenido INTRODUCCION .................................................................................................................. 3 Subfamilia Cicadinae LATREILLE, 1802. ............................................................................ 4 Tribu Zammarini DISTANT, 1905. ....................................................................................... 4 Odopoea diriangani DISTANT, 1881. ............................................................................... 4 Miranha imbellis (WALKER, 1858). ................................................................................. 6 Zammara smaragdina WALKER, 1850. ............................................................................ 9 Tribu Cryptotympanini HANDLIRSCH, 1925. ................................................................... 13 Sub-tribu Cryptotympanaria HANDLIRSCH, 1925. ........................................................... 13 Diceroprocta bicosta (WALKER, 1850). ......................................................................... 13 Diceroprocta -
General-Poster
XXIV International Congress of Entomology General-Poster > 157 Section 1 Taxonomy August 20-22 (Mon-Wed) Presentation Title Code No. Authors_Presenting author PS1M001 Madagascar’s millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae): Taxonomy, phylogenetics and sexual dimorphism Michael Forthman, Christiane Weirauch PS1M002 Phylogenetic reconstruction of the Papilio memnon complex suggests multiple origins of mimetic colour pattern and sexual dimorphism Chia-Hsuan Wei, Matheiu Joron, Shen-HornYen PS1M003 The evolution of host utilization and shelter building behavior in the genus Parapoynx (Lepidoptera: Crambidae: Acentropinae) Ling-Ying Tsai, Chia-Hsuan Wei, Shen-Horn Yen PS1M004 Phylogenetic analysis of the spider mite family Tetranychidae Tomoko Matsuda, Norihide Hinomoto, Maiko Morishita, Yasuki Kitashima, Tetsuo Gotoh PS1M005 A pteromalid (Hymenoptera: Chalcidoidea) parasitizing larvae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) and the fi rst fi nding of the facial pit in Chalcidoidea Kazunori Matsuo, Junichiro Abe, Kanako Atomura, Junichi Yukawa PS1M006 Population genetics of common Palearctic solitary bee Anthophora plumipes (Hymenoptera: Anthophoridae) in whole species areal and result of its recent introduction in the USA Katerina Cerna, Pavel Munclinger, Jakub Straka PS1M007 Multiple nuclear and mitochondrial DNA analyses support a cryptic species complex of the global invasive pest, - Poster General Bemisia tabaci (Gennadius) (Insecta: Hemiptera: Aleyrodidae) Chia-Hung Hsieh, Hurng-Yi Wang, Cheng-Han Chung, -
First Host Plant Record for Pacarina (Hemiptera, Cicadidae)
Neotropical Biology and Conservation 15(1): 77–88 (2020) doi: 10.3897/neotropical.15.e49013 SHORT COMMUNICATION First host plant record for Pacarina (Hemiptera, Cicadidae) Annette Aiello1, Brian J. Stucky2 1 Smithsonian Tropical Research Institute, Panama 2 Florida Museum of Natural History, University of Florida, Gainesville, FL, USA Corresponding author: Brian J. Stucky ([email protected]) Academic editor: P. Nunes-Silva | Received 4 December 2019 | Accepted 20 February 2020 | Published 19 March 2020 Citation: Aiello A, Stucky BJ (2020) First host plant record for Pacarina (Hemiptera, Cicadidae). Neotropical Biology and Conservation 15(1): 77–88. https://doi.org/10.3897/neotropical.15.e49013 Abstract Twenty-nine Pacarina (Hemiptera: Cicadidae) adults, 12 males and 17 females, emerged from the soil of a potted Dracaena trifasciata (Asparagaceae) in Arraiján, Republic of Panama, providing the first rearing records and the first definitive host plant records for any species of Pacarina. These reared Pacarina appear to be morphologically distinct from all known species of Pacarina and likely repre- sent an undescribed species. In light of this finding, we also discuss the taxonomy, biogeography, and ecology of Pacarina. Keywords cicada, Dracaena, host plant, rearing, taxonomy Introduction As far as is known, all cicadas are herbivores that spend the vast majority of their long life cycles as nymphs, living deep underground and feeding on the xylem sap of plant roots (Beamer 1928; Cheung and Marshall 1973; White and Strehl 1978). Be- cause of their relative inaccessibility to researchers, very little information is availa- ble about the host plant associations of juvenile cicadas. Consequently, even though adult cicadas are among the most conspicuous and familiar of all insects, the host plants of most cicada species’ nymphs remain unknown. -
The New Cicada Species Cicadetta Anapaistica Sp. N. (Hemiptera: Cicadidae)
Zootaxa 2771: 25–40 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Spectacular song pattern from the Sicilian Mountains: The new cicada species Cicadetta anapaistica sp. n. (Hemiptera: Cicadidae) THOMAS HERTACH University of Basel, Department of Environmental Science, Institute of Biogeography, St. Johanns-Vorstadt 10, 4056 Basel, Switzer- land. E-mail: [email protected] Abstract Acoustic investigations of Cicadetta montana s. l. have revealed the presence of morphologically cryptic species in the last few years. This work describes the new cicada Cicadetta anapaistica sp. n. which was detected in the Madonie and Nebrodi Mountains (Italy, Sicily). The characteristic and sophisticated song is composed of three phrases, modulated on four typical power levels and three frequency ranges. The song pattern is compared with those of the closely related Ci- cadetta cerdaniensis and Cicadetta cantilatrix. Quantitative and even qualitative intraspecific differences of the song structure among individuals exist which appear to allow individual-specific recognition in many cases. As in other species of the complex, reliable morphological differences between the new species and others in the complex have not been found. The species is currently only known to be endemic to forest and ecotone habitats in a small mountain range. Be- cause of this limited distribution the species is likely to be vulnerable to habitat and climate changes. Key words: Cicadetta montana species complex, bioacoustics, song variability, Italy, ecology, distribution Introduction Taxonomists have focussed on morphology when describing cicadas (Cicadidae, sensu Moulds 2005) until the last few decades. -
An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
© Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant. -
Survey on the Singing Cicadas (Auchenorrhyncha: Cicadoidea) of Bulgaria, Including Bioacoustics
ARPHA Conference Abstracts 2: e46487 doi: 10.3897/aca.2.e46487 Conference Abstract Survey on the singing cicadas (Auchenorrhyncha: Cicadoidea) of Bulgaria, including bioacoustics Tomi Trilar‡§, Matija Gogala , Ilia Gjonov| ‡ Slovenian Museum of Natural History, Ljubljana, Slovenia § Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia | Sofia University "St. Kliment Ohridski", Faculty of Biology, Sofia, Bulgaria Corresponding author: Tomi Trilar ([email protected]) Received: 11 Sep 2019 | Published: 11 Sep 2019 Citation: Trilar T, Gogala M, Gjonov I (2019) Survey on the singing cicadas (Auchenorrhyncha: Cicadoidea) of Bulgaria, including bioacoustics. ARPHA Conference Abstracts 2: e46487. https://doi.org/10.3897/aca.2.e46487 Abstract The singing cicadas (Auchenorrhyncha: Cicadoidea) of Bulgaria remain poorly known. There are published records for 14 species (Arabadzhiev 1963, Barjamova 1976, Barjamova 1978, Barjamova 1990, Dirimanov and Harizanov 1965, Dlabola 1955, Gogala et al. 2005, Háva 2016, Janković 1971, Nast 1972, Nast 1987, Nedyalkov 1908, Pelov 1968, Yoakimov 1909): Lyristes plebejus, Cicada orni, Cicadatra atra, C. hyalina, C. persica, Cicadetta montana, C. mediterranea, Oligoglena tibialis, Tympanistalna gastrica, Pagiphora annulata, Dimissalna dimissa, Saticula coriaria, Tibicina haematodes and T. steveni. Two species from this list should be excluded from the list of Bulgarian cicadas, since T. gastrica is distributed in central and southern Portugal (Sueur et al. 2004) and S. coriaria is a north African species (Boulard 1981). We checked three major institutional collections housed in Sofia, Bulgaria: the National Museum of Natural History (NMNHS), Institute of Zoology (ZISB) and Biology Faculty of Sofia University "St. Kliment Ohridski" (BFUS). We confirmed 11 of the species mentioned in the literature, except C. -
Title Dead-Twig Discrimination for Oviposition in a Cicada
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Dead-twig discrimination for oviposition in a cicada, Title Cryptotympana facialis (Hemiptera: Cicadidae) Author(s) Moriyama, Minoru; Matsuno, Tomoya; Numata, Hideharu Citation Applied Entomology and Zoology (2016), 51(4): 615-621 Issue Date 2016-11 URL http://hdl.handle.net/2433/218683 The final publication is available at Springer via http://dx.doi.org/10.1007/s13355-016-0438-z; The full-text file will be made open to the public on 01 November 2017 in Right accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University Dead twig-discrimination for oviposition in a cicada, Cryptotympana facialis (Hemiptera: Cicadidae) Minoru Moriyama1, Tomoya Matsuno2, Hideharu Numata3 1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan 2Graduate School of Science, Osaka City University, Sumiyoshi 558-8585, Osaka, Japan 3Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Corresponding author Hideharu Numata Tel: +81-75-753-4073 Fax: +81-75-753-4113 E-mail address: [email protected] 1 Abstract In phytophagous insects, in spite of some general advantages of oviposition on a vital part of their host food plants, certain species prefer dead tissues for oviposition. In the present study, we examined oviposition-related behaviors of a cicada, Cryptotympana facialis (Walker), which lays eggs exclusively into dead twigs. From behavioral observation of females experimentally assigned to live or dead plant material, we found that egg laying into freshly cut live twigs is abandoned in two phases, i.e. -
WORLD LIST of EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1
WORLD LIST OF EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1 Genus Species Family Order Common names Faunar Distribution & References Remarks life Epeira syn nigra Vinson Nephilidae Araneae Afregion Madagascar (Decary, 1937) Nephilia inaurata stages (Walck.) Nephila inaurata (Walckenaer) Nephilidae Araneae Afr Madagascar (Decary, 1937) Epeira nigra Vinson syn Nephila madagscariensis Vinson Nephilidae Araneae Afr Madagascar (Decary, 1937) Araneae gen. Araneae Afr South Africa Gambia (Bodenheimer 1951) Bostrichidae gen. Bostrichidae Col Afr Congo (DeFoliart 2002) larva Chrysobothris fatalis Harold Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Lampetis wellmani (Kerremans) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) syn Psiloptera larva wellmani Lampetis sp. Buprestidae Col jewel beetle Afr Togo (Tchibozo 2015) as Psiloptera in Tchibozo but this is Neotropical Psiloptera syn wellmani Kerremans Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) Psiloptera is larva Neotropicalsee Lampetis wellmani (Kerremans) Steraspis amplipennis (Fahr.) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Sternocera castanea (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Burkina Faso (Tchinbozo 2015) Sternocera feldspathica White Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) adult Sternocera funebris Boheman syn Buprestidae Col jewel beetle Afr Zimbabwe (Chavanduka, 1976; Gelfand, 1971) see S. orissa adult Sternocera interrupta (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Cameroun (Seignobos et al., 1996) Burkina Faso (Tchimbozo 2015) Sternocera orissa Buquet Buprestidae Col jewel beetle Afr Botswana (Nonaka, 1996), South Africa (Bodenheimer, 1951; syn S. funebris adult Quin, 1959), Zimbabwe (Chavanduka, 1976; Gelfand, 1971; Dube et al 2013) Scarites sp. Carabidae Col ground beetle Afr Angola (Bergier, 1941), Madagascar (Decary, 1937) larva Acanthophorus confinis Laporte de Cast.