Insecta: Hemiptera: Cicadidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rapid and Simple Species Identification of Cicada Exuviae
insects Article Rapid and Simple Species Identification of Cicada Exuviae Using COI-Based SCAR Assay Pureum Noh, Wook Jin Kim, Jun-Ho Song , Inkyu Park , Goya Choi and Byeong Cheol Moon * Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Korea; [email protected] (P.N.); [email protected] (W.J.K.); [email protected] (J.-H.S.); [email protected] (I.P.); [email protected] (G.C.) * Correspondence: [email protected]; Tel.: +82-61-338-7100 Received: 5 February 2020; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Cicadidae periostracum (CP), the medicinal name of cicada exuviae, is well-known insect-derived traditional medicine with various pharmacological effects, e.g., anticonvulsive, anti-inflammatory, antitussive, and anticancer effects; it is also beneficial for the treatment of Parkinson’s disease. For appropriate CP application, accurate species identification is essential. The Korean pharmacopoeia and the pharmacopoeia of the People’s Republic of China define Cryptotympana atrata as the only authentic source of CP. Species identification of commercially distributed CP based on morphological features, however, is difficult because of the combined packaging of many cicada exuviae in markets, damage during distribution, and processing into powder form. DNA-based molecular markers are an excellent alternative to morphological detection. In this study, the mitochondrial cytochrome c oxidase subunit I sequences of C. atrata, Meimuna opalifera, Platypleura kaempferi, and Hyalessa maculaticollis were analyzed. On the basis of sequence alignments, we developed sequence-characterized amplified-region (SCAR) markers for efficient species identification. These markers successfully discriminated C. -
Cicadidae (Homoptera) De Nicaragua: Catalogo Ilustrado, Incluyendo Especies Exóticas Del Museo Entomológico De Leon
Rev. Nica. Ent., 72 (2012), Suplemento 2, 138 pp. Cicadidae (Homoptera) de Nicaragua: Catalogo ilustrado, incluyendo especies exóticas del Museo Entomológico de Leon. Por Jean-Michel Maes*, Max Moulds** & Allen F. Sanborn.*** * Museo Entomológico de León, Nicaragua, [email protected] ** Entomology Department, Australian Museum, Sydney, [email protected] *** Department of Biology, Barry University, 11300 NE Second Avenue, Miami Shores, FL 33161-6695USA, [email protected] INDEX Tabla de contenido INTRODUCCION .................................................................................................................. 3 Subfamilia Cicadinae LATREILLE, 1802. ............................................................................ 4 Tribu Zammarini DISTANT, 1905. ....................................................................................... 4 Odopoea diriangani DISTANT, 1881. ............................................................................... 4 Miranha imbellis (WALKER, 1858). ................................................................................. 6 Zammara smaragdina WALKER, 1850. ............................................................................ 9 Tribu Cryptotympanini HANDLIRSCH, 1925. ................................................................... 13 Sub-tribu Cryptotympanaria HANDLIRSCH, 1925. ........................................................... 13 Diceroprocta bicosta (WALKER, 1850). ......................................................................... 13 Diceroprocta -
General-Poster
XXIV International Congress of Entomology General-Poster > 157 Section 1 Taxonomy August 20-22 (Mon-Wed) Presentation Title Code No. Authors_Presenting author PS1M001 Madagascar’s millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae): Taxonomy, phylogenetics and sexual dimorphism Michael Forthman, Christiane Weirauch PS1M002 Phylogenetic reconstruction of the Papilio memnon complex suggests multiple origins of mimetic colour pattern and sexual dimorphism Chia-Hsuan Wei, Matheiu Joron, Shen-HornYen PS1M003 The evolution of host utilization and shelter building behavior in the genus Parapoynx (Lepidoptera: Crambidae: Acentropinae) Ling-Ying Tsai, Chia-Hsuan Wei, Shen-Horn Yen PS1M004 Phylogenetic analysis of the spider mite family Tetranychidae Tomoko Matsuda, Norihide Hinomoto, Maiko Morishita, Yasuki Kitashima, Tetsuo Gotoh PS1M005 A pteromalid (Hymenoptera: Chalcidoidea) parasitizing larvae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) and the fi rst fi nding of the facial pit in Chalcidoidea Kazunori Matsuo, Junichiro Abe, Kanako Atomura, Junichi Yukawa PS1M006 Population genetics of common Palearctic solitary bee Anthophora plumipes (Hymenoptera: Anthophoridae) in whole species areal and result of its recent introduction in the USA Katerina Cerna, Pavel Munclinger, Jakub Straka PS1M007 Multiple nuclear and mitochondrial DNA analyses support a cryptic species complex of the global invasive pest, - Poster General Bemisia tabaci (Gennadius) (Insecta: Hemiptera: Aleyrodidae) Chia-Hung Hsieh, Hurng-Yi Wang, Cheng-Han Chung, -
Cicada Ovipositors Enhanced with Metals and Other Inorganic Elements Matthew S
www.nature.com/scientificreports OPEN An augmented wood-penetrating structure: Cicada ovipositors enhanced with metals and other inorganic elements Matthew S. Lehnert1*, Kristen E. Reiter1,2, Gregory A. Smith1 & Gene Kritsky3 Few insect species are as popular as periodical cicadas (Magicicada spp.). Despite representing an enormous biomass and numbers that exceed 370/m2 during mass emergences, the extended time period of the underground nymphal stages (up to 17 years) complicates investigations of their life history traits and ecology. Upon emergence, female cicadas mate and then use their ovipositors to cut through wood to lay their eggs. Given the ability to penetrate into wood, we hypothesized that the ovipositor cuticle is augmented with inorganic elements, which could increase hardness and reduce ovipositor fracturing. We used scanning electron microscopy and energy dispersive x-ray spectroscopy to evaluate the material properties of ovipositors of four cicada species, including three species of periodical cicadas. We found 14 inorganic elements of the cuticle, of which P, Ca, Si, Mg, Na, Fe, Zn, Mn, Cl, K, and S show the highest concentrations (%wt) near the apex of the ovipositor, where other structural modifcations for penetrating wood are present. To the best of our knowledge, this is the frst report of metal deposits in the cuticle of true bugs (Hemiptera, >80,000 described species). Te independent origin of traits that perform similar functions represents a cornerstone of natural selection. Examples of such convergent evolution can be found across animal taxa: intelligence among birds and apes1, echolocation among bats and dolphins2, and fuid-feeding mechanisms among fies and butterfies3. -
An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
© Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant. -
Title Dead-Twig Discrimination for Oviposition in a Cicada
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Dead-twig discrimination for oviposition in a cicada, Title Cryptotympana facialis (Hemiptera: Cicadidae) Author(s) Moriyama, Minoru; Matsuno, Tomoya; Numata, Hideharu Citation Applied Entomology and Zoology (2016), 51(4): 615-621 Issue Date 2016-11 URL http://hdl.handle.net/2433/218683 The final publication is available at Springer via http://dx.doi.org/10.1007/s13355-016-0438-z; The full-text file will be made open to the public on 01 November 2017 in Right accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University Dead twig-discrimination for oviposition in a cicada, Cryptotympana facialis (Hemiptera: Cicadidae) Minoru Moriyama1, Tomoya Matsuno2, Hideharu Numata3 1National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan 2Graduate School of Science, Osaka City University, Sumiyoshi 558-8585, Osaka, Japan 3Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Corresponding author Hideharu Numata Tel: +81-75-753-4073 Fax: +81-75-753-4113 E-mail address: [email protected] 1 Abstract In phytophagous insects, in spite of some general advantages of oviposition on a vital part of their host food plants, certain species prefer dead tissues for oviposition. In the present study, we examined oviposition-related behaviors of a cicada, Cryptotympana facialis (Walker), which lays eggs exclusively into dead twigs. From behavioral observation of females experimentally assigned to live or dead plant material, we found that egg laying into freshly cut live twigs is abandoned in two phases, i.e. -
WORLD LIST of EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1
WORLD LIST OF EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1 Genus Species Family Order Common names Faunar Distribution & References Remarks life Epeira syn nigra Vinson Nephilidae Araneae Afregion Madagascar (Decary, 1937) Nephilia inaurata stages (Walck.) Nephila inaurata (Walckenaer) Nephilidae Araneae Afr Madagascar (Decary, 1937) Epeira nigra Vinson syn Nephila madagscariensis Vinson Nephilidae Araneae Afr Madagascar (Decary, 1937) Araneae gen. Araneae Afr South Africa Gambia (Bodenheimer 1951) Bostrichidae gen. Bostrichidae Col Afr Congo (DeFoliart 2002) larva Chrysobothris fatalis Harold Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Lampetis wellmani (Kerremans) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) syn Psiloptera larva wellmani Lampetis sp. Buprestidae Col jewel beetle Afr Togo (Tchibozo 2015) as Psiloptera in Tchibozo but this is Neotropical Psiloptera syn wellmani Kerremans Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) Psiloptera is larva Neotropicalsee Lampetis wellmani (Kerremans) Steraspis amplipennis (Fahr.) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Sternocera castanea (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Burkina Faso (Tchinbozo 2015) Sternocera feldspathica White Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) adult Sternocera funebris Boheman syn Buprestidae Col jewel beetle Afr Zimbabwe (Chavanduka, 1976; Gelfand, 1971) see S. orissa adult Sternocera interrupta (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Cameroun (Seignobos et al., 1996) Burkina Faso (Tchimbozo 2015) Sternocera orissa Buquet Buprestidae Col jewel beetle Afr Botswana (Nonaka, 1996), South Africa (Bodenheimer, 1951; syn S. funebris adult Quin, 1959), Zimbabwe (Chavanduka, 1976; Gelfand, 1971; Dube et al 2013) Scarites sp. Carabidae Col ground beetle Afr Angola (Bergier, 1941), Madagascar (Decary, 1937) larva Acanthophorus confinis Laporte de Cast. -
Two New Species of Cicadatra (Hemiptera: Cicadoidea) from Greece
bs_bs_banner Entomological Science (2013) 16, 83–90 doi:10.1111/j.1479-8298.2012.00540.x ORIGINAL ARTICLE Two new species of Cicadatra (Hemiptera: Cicadoidea) from Greece Paula Cristina SIMÕES1, Allen SANBORN2 and José Alberto QUARTAU1 1Centro de Biologia Ambiental, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; and 2Department of Biology, Barry University, Miami Shores, Florida, USA Abstract The present study is the description of two new species of Cicadatra Kolenati, 1857 found in some Greek islands during the summers of 1998 and 2001. Cicadatra icari sp. n. is described from Ikaria and Samos and Cicadatra karpathosensis sp. n. from Karpathos. Description of the external morphology is provided. The male genitalia were dissected for close examination and illustration. Acoustic signals produced by males were recorded and analyzed and a description of the calling songs is provided. Discrimination from the closely allied species is also provided. Key words: calling song, cicadas, morphology, taxonomy INTRODUCTION Along the Mediterranean basin, the Aegean Sea islands and the Balkans constitute a high diversity area Cicadas constitute the superfamily Cicadoidea, a group which offered a number of important refugia during the of the Hemiptera Auchenorrhyncha where males typi- last glacial period, and hence where several taxa might cally communicate during pair formation and courtship have evolved and from where species might have through acoustic distinctive signals (Claridge 1985; dispersed, namely in Europe (e.g. Oosterbroek 1994; Boulard & Mondon 1995; Quartau et al. 1999; Simões Taberlet et al. 1998; Hewitt 1999; Çiplak 2004; et al. 2000). These striking acoustic signals make them Augustinos et al. -
Genera of American Cicadas North of Mexico
GENERA OF AMERICAN CICADAS NORTH OF MEXICO By MAXINE SHOEMAKER HEATH A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY CF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA .1978 , To my family Jim, Cindy, Pam, Jessica ACKNOWLEDGEMENTS Many people have generously contributed time, advice, and information useful in the preparation of this dissertation. I would like to thank Dr. Thomas Moore of the University of Michigan, Dr. George Byers, Dr. Peter Ashlock, and Dr. Charles Michner of the University of Kansas, Dr. Frank Hasbrouck and Mr. Martin Kolner of Arizona State University, Dr. and Mme. Michel Boulard of the Museum National d'Histoire Naturelle, Dr. T. Knight and Dr. Peter Broomfield of the British Museum (Natural History), Mr. Donald Webb of the Illinois Natural History Survey, Dr. Frank Mead of the Florida Division of Plant Industry, and Dr. Jack Cranford of Virginia Polytechnic Institute for their interest, information, access to col- lections, and loans and gifts of cicada specimens. Mrs. Alice Prickett assisted me in the planning of the illustrations. I thank my committee, Professors Reece Sailer, Harvey Cromroy, Lewis Berner, Ellis Matneny, and Frederick King, for continued advice and encouragement. Most of all I would like to thank my family for assistance and sacrifices, especially my husband, James E. Heath, who introduced me to the study of cicadas, and whose continued help and encouragement made this dissertation possible. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii ABSTRACT viii CHAPTER I INTRODUCTION I Life Cycle 4 The Problem 7 II MATERIALS AND METHODS 9 III CLASSIFICATION: HIGHER TAKA 11 Order 11 Suborder 11 Superfamily 11 Family Cicadidae 12 Subfamilies 20 Tribes 22 IV CLASSIFICATION: GENERA 26 V GENERAL MORPHOLOGY 29 General Body Proportions 32 Head . -
Here May Be a Threshold of 8 Mm Above
c 2007 by Daniela Maeda Takiya. All rights reserved. SYSTEMATIC STUDIES ON THE LEAFHOPPER SUBFAMILY CICADELLINAE (HEMIPTERA: CICADELLIDAE) BY DANIELA MAEDA TAKIYA B. Sc., Universidade Federal do Rio de Janeiro, 1998 M. Sc., Universidade Federal do Rio de Janeiro, 2001 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2007 Urbana, Illinois Abstract The leafhopper subfamily Cicadellinae (=sharpshooters) includes approximately 340 genera and over 2,000 species distributed worldwide, but it is most diverse in the Neotropical region. In contrast to the vast majority of leafhoppers (members of the family Cicadellidae), which are specialists on phloem or parenchyma fluids, cicadellines feed on xylem sap. Because xylem sap is such a nutritionally poor diet, xylem specialists must ingest large quantities of sap while feeding. They continuously spurt droplets of liquid excrement, forming the basis for their common name. Specialization on xylem sap also occurs outside the Membracoidea, in members of the related superfamilies Cicadoidea (cicadas) and Cercopoidea (spittlebugs) of the order Hemiptera. Because larger insects with greater cibarial volume are thought to more easily overcome the negative pressure of xylem sap, previous authors suggested that there may be a threshold of 8 mm above which, the energetic cost of feeding is negligible. In chapter 1 the method of phylogenetic contrasts was used to re-investigate the evolution of body size of Hemiptera and test the hypothesis that shifts to xylem feeding were associated with an increase in body size. After correcting for phylogenetic dependence and taking into consideration possible alternative higher-level phylogenetic scenarios, statistical analyses of hemipteran body sizes did not show a significant increase in xylem feeding lineages. -
The Cicada Genus Chremistica Stål (Hemiptera: Cicadidae) in Sundaland
S. YAAKOP 1, J. P. DUFFELS 2 & H. VISSER 2 1 Centre for Insect Systematics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 2 Institute for Biodiversity and Ecosystem Dynamics (Zoological Museum), University of Amsterdam, The Netherlands THE CICADA GENUS CHREMISTICA STÅL (HEMIPTERA: CICADIDAE) IN SUNDALAND Yaakop, S., J. P. Duffels & H. Visser, 2005. The cicada genus Chremistica Stål (Hemiptera: Cicadidae) in Sundaland. – Tijdschrift voor Entomologie 148: 247-306, figs. 1-92, table 1. [ 0040-7496]. Published 1 December 2005. This study presents a revision of the 17 species of the cicada genus Chremistica Stål occurring in Sundaland: Malayan Peninsula, Java, Sumatra and Borneo. Nine species were already known to science: Chremistica biloba Bregman, C. bimaculata (Olivier), C. guamusangensis Salmah & Zaidi, C. kecil Salmah & Zaidi, C. minor Bregman, C. nesiotes Breddin, C. pontianaka (Distant), C. tridentigera (Breddin), and C. umbrosa (Distant). Eight species are new to science: Chremistica borneensis, C. brooksi, C. cetacauda, C. echinaria, C. hollowayi, C. malayensis, C. niasica, and C. sumatrana. The Sundaland species of Chremistica belong to three species groups: the C. pontianaka group, the bimaculata group and the tridentigera group. A key to the species is presented for the identification of the males of Chremistica from Sundaland. The ge- ographical distributions of the species are presented in maps. Correspondence: S. Yaakop, Centre for Insect Systematics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; e-mail: [email protected] Key words. – Chremistica; Cicadidae; taxonomy; new species; key; distribution; Sundaland; South East Asia. The first aim of this paper is to contribute to the Pacific, have already demonstrated that cicadas can be knowledge of cicada biodiversity in Sundaland: the instrumental in recognizing hot spots of species rich- Malayan Peninsula south of the Isthmus of Krah, ness and areas of endemism with unique biota (e.g., Sumatra, Borneo and Java, and the small islands Boer & Duffels 1997). -
The Cicada Genus Megapomponia Boulard, 2005 from Laos, With
102 North-Western Journal of Zoology 2020, vol.16 (1) - Correspondence: Notes The cicada genus Megapomponia Boulard, 2005 Megapomponia intermedia (Distant 1905) from Laos, with description of a new species Pomponia intermedia Distant 1905: 68–69 [Type Location: Tenasserim: Thaungyang Valley]; Hayashi 1993: 14, fig. 3. (Hemiptera: Cicadidae) Megapomponia intermedia: Boulard 2008: 365; Lee & Sanborn 2010: 31, 32, 34, figs 3–4, 8; Lee, 2014: 64. Lee (2014) recorded 60 species of Cicadidae (Insecta: Hemip- Distribution: Vietnam, Laos, Thailand, and Myanmar. tera) from Laos, belonging to 33 genera. The genus Megapomponia Boulard, 2005 contains eight Megapomponia bourgoini sp.nov. species distributed throughout the Oriental Region. The five urn: Figs 1–3 species included in Megapomponia by Boulard (2005), M. im- Etymology: the species is dedicated to Prof. Thierry peratoria (Westwood, 1842), M. merula (Distant, 1905), M. in- Bourgoin in acknowledgment for all his help during visit of termedia (Distant, 1905), M. pendleburyi (Boulard, 2001), and the first author to the MNHN collection. M. clamorigravis Boulard, 2005, are very hard to distinguish Type material: Laos: Holotype ♂: [Laos, Seno, 1961, leg. from each other in morphology, even in the male genitalia. Duhaut] (MNHN). Coordinates of Seno (= Xeno): 16°40'37"N More recently, Lee & Sanborn (2010) described three addi- 104°58'58"E. M. atrotunicata tional species of this genus, Lee & Sanborn Description: Measurements (in mm) - ♂: body length: 2010, M. sitesi Sanborn & Lee 2010, and M. castanea Lee & 72.5; fore wing length: 83.5; head width: 20.2; length of head: Sanborn 2010 from Thailand and Cambodia. 9.1; pronotum width: 24.5.