Sound Waves Sound Waves • Speed of Sound • Acoustic Pressure • Acoustic Impedance • Decibel Scale • Reflection of Sound Waves • Doppler Effect

Total Page:16

File Type:pdf, Size:1020Kb

Sound Waves Sound Waves • Speed of Sound • Acoustic Pressure • Acoustic Impedance • Decibel Scale • Reflection of Sound Waves • Doppler Effect In this lecture • Sound waves Sound Waves • Speed of sound • Acoustic Pressure • Acoustic Impedance • Decibel Scale • Reflection of sound waves • Doppler effect Sound Waves (Longitudinal Waves) Sound Range Frequency Source, Direction of propagation Vibrating surface Audible Range 15 – 20,000Hz Propagation Child’’s hearing 15 – 40,000Hz of zones of Male voice 100 – 1500Hz alternating ------+ + + + + compression Female voice 150 – 2500Hz and Middle C 262Hz rarefaction Concert A 440Hz Pressure Bat sounds 50,000 – 200,000Hz Wavelength, λ Medical US 2.5 - 40 MHz Propagation Speed = number of cycles per second X wavelength Max sound freq. 600 MHz c = f λ B Speed of Sound c = Sound Particle Velocity ρ • Speed at which longitudinal displacement of • Velocity, v, of the particles in the particles propagates through medium material as they oscillate to and fro • Speed governed by mechanical properties of c medium v • Stiffer materials have a greater Bulk modulus and therefore a higher speed of sound • Typically several tens of mms-1 1 Acoustic Pressure Acoustic Impedance • Pressure, p, caused by the pressure changes • Pressure, p, is applied to a molecule it induced in the material by the sound energy will exert pressure the adjacent molecule, which exerts pressure on its c adjacent molecule. P0 P • It is this sequence that causes pressure to propagate through medium. • p= P-P0 , (where P0 is normal pressure) • Typically several tens of kPa Acoustic Impedance Acoustic Impedance • Acoustic pressure increases with particle velocity, v, but also depends upon properties • Acoustic pressure is analogous to electrical of the medium resistance: • Relationship between acoustic pressure and V = I R particle velocity is characterised by the acoustic impedance of the medium p =v Z p • Units: kg m-2 s-1 • Z is a constant for a material (resistance, R) Z = or a rayl that inhibits velocity (current, I) for a given v pressure (voltage, V) Acoustic Impedance Acoustic Impedance • Acoustic impedance is also related to the elasticity of the medium • Wave propagation speed depends upon • Stiffer bonds between molecules increases the elasticity of medium and density: pressure exerted by a molecule moving with velocity v. • A springy material will have high molecular motion and absorb sound energy in the bonds Z = ρ c = B ρ – less energy will be transferred between molecules B Z = v 2 Acoustic Power Acoustic Intensity • Sound energy is measured in Joules (J) • Acoustic Intensity is measured in W cm-2 • Sound Power in Js-1 or Watts (W) • Instantaneous power passing through a • Again analogous to electricity unit area of material P = pv =v 2Z • Typical intensities used for ultrasound imaging are between 0.01 – 1 mW mm-2 Recap Logarithms Decibel Scale • Comparative sound intensity is measured using • If loga(b) = c decibels • Logarithmic unit used to describe a ratio • Then c is the power to which you ⎛ I ⎞ have to raise a, in order to get b. ⎜ 2 ⎟ dB = 10log⎜ ⎟ ⎝ I1 ⎠ c • Put more simply, a = b •Describe very big ratios using modest numbers Reflection & Transmission of Example Sound Waves • For an incident ultrasound beam of intensity • A pulse of sound • • Z of 1 Wcm-2 is reflected with an intensity of incident on an interface 1 Incident, II 0.1mW cm-2. Express this power loss in dB. between media with different mechanical Reflected, I ⎛ I ⎞ Reflected, IR ⎜ 2 ⎟ properties can undergo dB = 10log⎜ ⎟ ⎝ I1 ⎠ two processes Z ⎛ 0.0001 ⎞ 2 = 10log⎜ ⎟ Transmitted, I ⎝ 1 ⎠ • Transmission or T = 10 × −4 Reflection = −40dB 3 Reflection & Transmission of Reflection & Transmission of Sound Waves Sound Waves • Amount of reflected • Reflected Intensity • Z • Z and transmitted light 1 1 Incident, II Incident, II depends upon = × impedance difference IR R II Reflected, IR Reflected, IR II = IT + IR 2 Z2 I ⎛ Z − Z ⎞ Z2 R = R = ⎜ 1 2 ⎟ Transmitted, I ⎜ ⎟ Transmitted, I T II ⎝ Z1 + Z2 ⎠ T Reflection & Transmission of Reflection & Transmission of Sound Waves Sound Waves • Transmitted Intensity • Z Z 1 • If no energy is lost to 1 Incident, II Incident, II medium IT =T × II Reflected, IR Reflected, IR T + R = 1 IT 4Z1Z 2 Z2 Z2 T = = 2 II ()Z1 + Z 2 Transmitted, IT Transmitted, IT Reflection & Transmission of Impedance Matching Sound Waves • Reflection and • To optimise • • Probe transmission of Transmission of US sound waves into patient from forms the basis probe an impedance of ultrasound matching medium is Gel imaging used Tissue Z M = ZT × Z p 4 Example • If a transducer and tissue have acoustic impedances of 30x106 & 1.5x106 kgm-2s-1 respectively, what acoustic impedance Doppler Effect should a matching medium have to minimise reflection? Stationary Sound Source Moving Sound Source Speed of sound in air is constant 340ms-1 c λ c λ λ c v f=c/λ f=c/λ f=c/λ Moving Sound Source Example Definitions • A police car travelling at 60mph has a VS : Velocity of Source siren emitting sound with frequency (f ) (+ve when source is travelling away from listener) s VL : Velocity of Listener 300Hz. What frequency would a (+ve when listener is travelling away from source) stationary observer measure if the police car was travelling away from her? c λ v ⎛ c + v ⎞ ⎜ L ⎟ f L = fS ⎜ ⎟ ⎝ c + vs ⎠ 5 Super-sonic Super-sonic “Bang” v = c v > c Reflected Sound Doppler Ultrasound source reflector listener ⎛ 2V ⎞ V f = f ⎜1 − R ⎟ R L S ⎝ c ⎠ Remember: If reflector is moving Change in frequency, away from transceiver, shift is –ve known as the Doppler (i.e.. Red or down shift in freq). If Shift, fDoppler reflector is moving towards transceiver, shift is +ve (i.e. blue or ⎛ 2VR ⎞ f = f ⎜ ⎟ up-shift in freq). Doppler S ⎝ c ⎠ Summary Practice Questions • Sound waves 1. A sound wave propagates at 300ms-1 through a medium with an acoustic pressure of 10 pa. Calculate the acoustic impedance of the medium • Speed of sound 2. A sound wave propagates at 4080ms-1 through a medium with a density of 1700 kgm-3. • Acoustic Pressure Calculate the acoustic impedance of the medium • Acoustic Impedance • Reflection of sound waves • Decibel Scale • Doppler effect 6.
Recommended publications
  • A Comparison Study of Normal-Incidence Acoustic Impedance Measurements of a Perforate Liner
    A Comparison Study of Normal-Incidence Acoustic Impedance Measurements of a Perforate Liner Todd Schultz1 The Mathworks, Inc, Natick, MA 01760 Fei Liu,2 Louis Cattafesta, Mark Sheplak3 University of Florida, Gainesville, FL 32611 and Michael Jones4 NASA Langley Research Center, Hampton, VA 23681 The eduction of the acoustic impedance for liner configurations is fundamental to the reduction of noise from modern jet engines. Ultimately, this property must be measured accurately for use in analytical and numerical propagation models of aircraft engine noise. Thus any standardized measurement techniques must be validated by providing reliable and consistent results for different facilities and sample sizes. This paper compares normal- incidence acoustic impedance measurements using the two-microphone method of ten nominally identical individual liner samples from two facilities, namely 50.8 mm and 25.4 mm square waveguides at NASA Langley Research Center and the University of Florida, respectively. The liner chosen for this investigation is a simple single-degree-of-freedom perforate liner with resonance and anti-resonance frequencies near 1.1 kHz and 2.2 kHz, respectively. The results show that the ten measurements have the most variation around the anti-resonance frequency, where statistically significant differences exist between the averaged results from the two facilities. However, the sample-to-sample variation is comparable in magnitude to the predicted cross-sectional area-dependent cavity dissipation differences between facilities, providing evidence that the size of the present samples does not significantly influence the results away from anti-resonance. I. Introduction ODERN turbofan engines rely on acoustic liners to suppress engine noise and meet community noise Mstandards.
    [Show full text]
  • Definition and Measurement of Sound Energy Level of a Transient Sound Source
    J. Acoust. Soc. Jpn. (E) 8, 6 (1987) Definition and measurement of sound energy level of a transient sound source Hideki Tachibana,* Hiroo Yano,* and Koichi Yoshihisa** *Institute of Industrial Science , University of Tokyo, 7-22-1, Roppongi, Minato-ku, Tokyo, 106 Japan **Faculty of Science and Technology, Meijo University, 1-501, Shiogamaguti, Tenpaku-ku, Nagoya, 468 Japan (Received 1 May 1987) Concerning stationary sound sources, sound power level which describes the sound power radiated by a sound source is clearly defined. For its measuring methods, the sound pressure methods using free field, hemi-free field and diffuse field have been established, and they have been standardized in the international and national stan- dards. Further, the method of sound power measurement using the sound intensity technique has become popular. On the other hand, concerning transient sound sources such as impulsive and intermittent sound sources, the way of describing and measuring their acoustic outputs has not been established. In this paper, therefore, "sound energy level" which represents the total sound energy radiated by a single event of a transient sound source is first defined as contrasted with the sound power level. Subsequently, its measuring methods by two kinds of sound pressure method and sound intensity method are investigated theoretically and experimentally on referring to the methods of sound power level measurement. PACS number : 43. 50. Cb, 43. 50. Pn, 43. 50. Yw sources, the way of describing and measuring their 1. INTRODUCTION acoustic outputs has not been established. In noise control problems, it is essential to obtain In this paper, "sound energy level" which repre- the information regarding the noise sources.
    [Show full text]
  • Physics of Ultrasound TI Precision Labs – Ultrasonic Sensing
    Physics of Ultrasound TI Precision Labs – Ultrasonic Sensing Presented by Akeem Whitehead Prepared by Akeem Whitehead Definition of Ultrasound Sound Frequency Spectrum Ultrasound is defined as: • sound waves with a frequency above the upper limit of human hearing at -destructive testing EarthquakeVolcano Human hearing Animal hearingAutomotiveWater park level assist sensingLiquid IdentificationMedical diagnosticsNon Acoustic microscopy 20kHz. • having physical properties that are 0 20 200 2k 20k 200k 2M 20M 200M identical to audible sound. • a frequency some animals use for Infrasound Audible Ultrasound navigation and echo location. This content will focus on ultrasonic systems that use transducers operating between 20kHz up to several GHz. >20kHz 2 Acoustics of Ultrasound When ultrasound is a stimulus: When ultrasound is a sensation: Generates and Emits Ultrasound Wave Detects and Responds to Ultrasound Wave 3 Sound Propagation Ultrasound propagates as: • longitudinal waves in air, water, plasma Particles at Rest • transverse waves in solids The transducer’s vibrating diaphragm is the source of the ultrasonic wave. As the source vibrates, the vibrations propagate away at the speed of sound to Longitudinal Wave form a measureable ultrasonic wave. Direction of Particle Motion Direction of The particles of the medium only transport the vibration is Parallel Wave Propagation of the ultrasonic wave, but do not travel with the wave. The medium can cause waves to be reflected, refracted, or attenuated over time. Transverse Wave An ultrasonic wave cannot travel through a vacuum. Direction of Particle Motion λ is Perpendicular 4 Acoustic Properties 100 90 Ultrasonic propagation is affected by: 80 1. Relationship between density, pressure, and temperature 70 to determine the speed of sound.
    [Show full text]
  • Particle Motions Caused by Seismic Interface Waves
    Prodeedings of the 37th Scandinavian Symposium on Physical Acoustics 2 - 5 February 2014 Particle motions caused by seismic interface waves Jens M. Hovem, [email protected] 37th Scandinavian Symposium on Physical Acoustics Geilo 2nd - 5th February 2014 Abstract Particle motion sensitivity has shown to be important for fish responding to low frequency anthropogenic such as sounds generated by piling and explosions. The purpose of this article is to discuss the particle motions of seismic interface waves generated by low frequency sources close to solid rigid bottoms. In such cases, interface waves, of the type known as ground roll, or Rayleigh, Stoneley and Scholte waves, may be excited. The interface waves are transversal waves with slow propagation speed and characterized with large particle movements, particularity in the vertical direction. The waves decay exponentially with distance from the bottom and the sea bottom absorption causes the waves to decay relative fast with range and frequency. The interface waves may be important to include in the discussion when studying impact of low frequency anthropogenic noise at generated by relative low frequencies, for instance by piling and explosion and other subsea construction works. 1 Introduction Particle motion sensitivity has shown to be important for fish responding to low frequency anthropogenic such as sounds generated by piling and explosions (Tasker et al. 2010). It is therefore surprising that studies of the impact of sounds generated by anthropogenic activities upon fish and invertebrates have usually focused on propagated sound pressure, rather than particle motion, see Popper, and Hastings (2009) for a summary and overview. Normally the sound pressure and particle velocity are simply related by a constant; the specific acoustic impedance Z=c, i.e.
    [Show full text]
  • Sound Power Measurement What Is Sound, Sound Pressure and Sound Pressure Level?
    www.dewesoft.com - Copyright © 2000 - 2021 Dewesoft d.o.o., all rights reserved. Sound power measurement What is Sound, Sound Pressure and Sound Pressure Level? Sound is actually a pressure wave - a vibration that propagates as a mechanical wave of pressure and displacement. Sound propagates through compressible media such as air, water, and solids as longitudinal waves and also as transverse waves in solids. The sound waves are generated by a sound source (vibrating diaphragm or a stereo speaker). The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound and are forming the sound wave. At a fixed distance from the sound source, the pressure, velocity, and displacement of the medium vary in time. Compression Refraction Direction of travel Wavelength, λ Movement of air molecules Sound pressure Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure, caused by a sound wave. In air the sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit for sound pressure p is the pascal (symbol: Pa). 1 Sound pressure level Sound pressure level (SPL) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level. The standard reference sound pressure in the air or other gases is 20 µPa, which is usually considered the threshold of human hearing (at 1 kHz).
    [Show full text]
  • Measurements of Acoustic Impedance and Their Data Application to Calculation and Audible Simulation of Sound Propagation
    Acoust. Sci. & Tech. 29, 1 (2008) #2008 The Acoustical Society of Japan PAPER Measurements of acoustic impedance and their data application to calculation and audible simulation of sound propagation Teruo Iwase1, Yu Murotuka2, Kenichi Ishikawa3 and Koichi Yoshihisa4 1Faculty of Engineering, Niigata University, 8050 Igarashi 2-no-cho Nishi-ku, Niigata, 950–2181 Japan 2Graduate School, Niigata University, 8050 Igarashi 2-no-cho Nishi-ku, Niigata, 950–2181 Japan 3Oriental Consultants Co. Ltd., Shibuya Bldg. 16–28 Shibuya, Shibuya-ku, Tokyo 150–0036 Japan 4Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya, 468–8502 Japan ( Received 20 April 2007, Accepted for publication 17 August 2007 ) Abstract: Acoustic impedance determines the boundary condition of each sound field, but collections of actual values to evaluate sound fields are insufficient. Therefore, measurements of acoustic impedance using a particle velocity sensor were taken on different fields. Such measurement results were used for sound propagation calculations. Frequency characteristics of sound propagation on grass, snow-covered, and porous drainage pavement surfaces showed fair correspondence with field measurement results. Subsequently, fine calculations in the frequency domain were converted to impulse responses for each sound field model. Convolution operations based on the impulse response and on voice, music, and other noise sources readily produced an ideal sound field for the audible sound file. Furthermore, simulations of noise from a car running through a paved drainage area, with noise reduction effects, were attempted as advanced applications. Keywords: Acoustic impedance, Sound propagation, Road traffic noise, Snow field, Drainage pavement, Impulse response, Convolution PACS number: 43.28.En, 43.58.Bh [doi:10.1250/ast.29.21] example, the prediction method for traffic noise has 1.
    [Show full text]
  • Acoustic Particle Velocity Investigations in Aeroacoustics Synchronizing PIV and Microphone Measurements
    INTER-NOISE 2016 Acoustic particle velocity investigations in aeroacoustics synchronizing PIV and microphone measurements Lars SIEGEL1; Klaus EHRENFRIED1; Arne HENNING1; Gerrit LAUENROTH1; Claus WAGNER1, 2 1 German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology (AS), Göttingen, Germany 2 Technical University Ilmenau, Institute of Thermodynamics and Fluid Mechanics, Ilmenau, Germany ABSTRACT The aim of the present study is the detection and visualization of the sound propagation process from a strong tonal sound source in flows. To achieve this, velocity measurements were conducted using particle image velocimetry (PIV) in a wind tunnel experiment under anechoic conditions. Simultaneously, the acoustic pressure fluctuations were recorded by microphones in the acoustic far field. The PIV fields of view were shifted stepwise from the source region to the vicinity of the microphones. In order to be able to trace the acoustic propagation, the cross-correlation function between the velocity and the pressure fluctuations yields a proxy variable for the acoustic particle velocity acting as a filter for the velocity fluctuations. The temporal evolution of this quantity indicates the propagation of the acoustic perturbations. The acoustic radiation of a square rod in a wind tunnel flow is investigated as a test case. It can be shown that acoustic waves propagate from emanating coherent flow structures in the near field through the shear layer of the open jet to the far field. To validate this approach, a comparison with a 2D simulation and a 2D analytical solution of a dipole is performed. 1. INTRODUCTION The localization of noise sources in turbulent flows and the traceability of the acoustic perturbations emanating from the source regions into the far field are still challenging.
    [Show full text]
  • Acoustics: the Study of Sound Waves
    Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion, sending alternating waves of compression and rarefaction radiating outward from the object. Sound information is transmitted by the amplitude and frequency of the vibrations, where amplitude is experienced as loudness and frequency as pitch. The familiar movement of an instrument string is a transverse wave, where the movement is perpendicular to the direction of travel (See Figure 1). Sound waves are longitudinal waves of compression and rarefaction in which the air molecules move back and forth parallel to the direction of wave travel centered on an average position, resulting in no net movement of the molecules. When these waves strike another object, they cause that object to vibrate by exerting a force on them. Examples of transverse waves: vibrating strings water surface waves electromagnetic waves seismic S waves Examples of longitudinal waves: waves in springs sound waves tsunami waves seismic P waves Figure 1: Transverse and longitudinal waves The forces that alternatively compress and stretch the spring are similar to the forces that propagate through the air as gas molecules bounce together. (Springs are even used to simulate reverberation, particularly in guitar amplifiers.) Air molecules are in constant motion as a result of the thermal energy we think of as heat. (Room temperature is hundreds of degrees above absolute zero, the temperature at which all motion stops.) At rest, there is an average distance between molecules although they are all actively bouncing off each other.
    [Show full text]
  • Chapter 3 Wave Properties of Particles
    Chapter 3 Wave Properties of Particles Overview of Chapter 3 Einstein introduced us to the particle properties of waves in 1905 (photoelectric effect). Compton scattering of x-rays by electrons (which we skipped in Chapter 2) confirmed Einstein's theories. You ought to ask "Is there a converse?" Do particles have wave properties? De Broglie postulated wave properties of particles in his thesis in 1924, based partly on the idea that if waves can behave like particles, then particles should be able to behave like waves. Werner Heisenberg and a little later Erwin Schrödinger developed theories based on the wave properties of particles. In 1927, Davisson and Germer confirmed the wave properties of particles by diffracting electrons from a nickel single crystal. 3.1 de Broglie Waves Recall that a photon has energy E=hf, momentum p=hf/c=h/, and a wavelength =h/p. De Broglie postulated that these equations also apply to particles. In particular, a particle of mass m moving with velocity v has a de Broglie wavelength of h λ = . mv where m is the relativistic mass m m = 0 . 1-v22/ c In other words, it may be necessary to use the relativistic momentum in =h/mv=h/p. In order for us to observe a particle's wave properties, the de Broglie wavelength must be comparable to something the particle interacts with; e.g. the spacing of a slit or a double slit, or the spacing between periodic arrays of atoms in crystals. The example on page 92 shows how it is "appropriate" to describe an electron in an atom by its wavelength, but not a golf ball in flight.
    [Show full text]
  • Chapter 12: Physics of Ultrasound
    Chapter 12: Physics of Ultrasound Slide set of 54 slides based on the Chapter authored by J.C. Lacefield of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with Physics or Ultrasound, commonly used in diagnostic imaging modality. Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 12. TABLE OF CONTENTS 12.1. Introduction 12.2. Ultrasonic Plane Waves 12.3. Ultrasonic Properties of Biological Tissue 12.4. Ultrasonic Transduction 12.5. Doppler Physics 12.6. Biological Effects of Ultrasound IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,2 12.1. INTRODUCTION • Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide nowadays • Ultrasound is an acoustic wave with frequencies greater than the maximum frequency audible to humans, which is 20 kHz IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,3 12.1. INTRODUCTION • Diagnostic imaging is generally performed using ultrasound in the frequency range from 2 to 15 MHz • The choice of frequency is dictated by a trade-off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue The information in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,4 12.1.
    [Show full text]
  • Experiments and Impedance Modeling of Liners Including the Effect of Bias Flow
    Experiments and Impedance Modeling of Liners Including The Effect of Bias Flow Juan Fernando Betts Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering J. Kelly, Chairman C. Fuller W. Saunders R. Thomas M. Jones T. Parrott July 28, 2000 Hampton, Virginia Key Words: Bias Flow, Impedance, Acoustic Liners, Perforated Plates Experiments and Impedance Modeling of Liners Including The Effect of Bias Flow Juan Fernando Betts (ABSTRACT) The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed, by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased.
    [Show full text]
  • What Is Acoustic Impedance and Why Is It Important?
    What is Acoustic Impedance and Why is it Important? Acoustic impedance is a ratio of acoustic pressure to flow. The specific acoustic impedance is a ratio of acoustic pressure to specific flow, or flow per unit area, or flow velocity. We discuss it on this music acoustics site because, for musical wind instruments, acoustic impedance has the advantage of being a physical property of the instrument alone -- it can be measured (or calculated) for the instrument without a player. It is a spectrum, because it has different values for different frequencies -- one can think of it as the acoustical response of the instrument for all possible frequencies. For instance, we measure it at the embouchure of an instrument because it tells us a lot about the way the player's lips, reed or the air jet from the mouth will interact with the instrument itself. So it tells us about the acoustical performance of the instrument, in an objective way that is independent of who might play it, and it allows us to compare subtle differences between instruments. So what is it? An analogy. Electrical resistance is often explained by analogy with the flow of water: the hydraulic resistance would be the ratio of the pressure difference between the ends of a pipe to the flow in the pipe. Electrical resistance is the ratio of the voltage applied to the electrical current it produces. Resistance is a particular (and rather boring) example ofimpedance, which is the general term for a ratio of voltage to current. DC (direct current) means constant or slowly varying current.
    [Show full text]