Table Chart Sound Pressure Levels Level Sound Pressure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Industrial Noise Control and Acoustics
Industrial Noise Control and Acoustics Randall F. Barron Louisiana Tech University Ruston, Louisiana, U.S.A. Marcel Dekker, Inc. New York • Basel Copyright © 2001 by Marcel Dekker, Inc. All Rights Reserved. Copyright © 2003 Marcel Dekker, Inc. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress. ISBN:0-8247-0701-X Thisbookisprintedonacid-freepaper. Headquarters MarcelDekker,Inc. 270MadisonAvenue,NewYork,NY10016 tel:212-696-9000;fax:212-685-4540 EasternHemisphereDistribution MarcelDekkerAG Hutgasse4,Postfach812,CH-4001Basel,Switzerland tel:41-61-260-6300;fax:41-61-260-6333 WorldWideWeb http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities, For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright # 2003 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage retrieval system, without permission in writing from the publisher. Current printing (last digit): 10987654321 PRINTED IN THE UNITED STATES OF AMERICA Copyright © 2003 Marcel Dekker, Inc. Preface Since the Walsh-Healy Act of 1969 was amended to include restrictions on the noise exposure of workers, there has been much interest and motivation in industry to reduce noise emitted by machinery. In addition to concerns about air and water pollution by contaminants, efforts have also been direc- ted toward control of environmental noise pollution. In response to these stimuli, faculty at many engineering schools have developed and introduced courses in noise control, usually at the senior design level. It is generally much more effective to design ‘‘quietness’’ into a product than to try to ‘‘fix’’ the noise problem in the field after the product has been put on the market. -
Definition and Measurement of Sound Energy Level of a Transient Sound Source
J. Acoust. Soc. Jpn. (E) 8, 6 (1987) Definition and measurement of sound energy level of a transient sound source Hideki Tachibana,* Hiroo Yano,* and Koichi Yoshihisa** *Institute of Industrial Science , University of Tokyo, 7-22-1, Roppongi, Minato-ku, Tokyo, 106 Japan **Faculty of Science and Technology, Meijo University, 1-501, Shiogamaguti, Tenpaku-ku, Nagoya, 468 Japan (Received 1 May 1987) Concerning stationary sound sources, sound power level which describes the sound power radiated by a sound source is clearly defined. For its measuring methods, the sound pressure methods using free field, hemi-free field and diffuse field have been established, and they have been standardized in the international and national stan- dards. Further, the method of sound power measurement using the sound intensity technique has become popular. On the other hand, concerning transient sound sources such as impulsive and intermittent sound sources, the way of describing and measuring their acoustic outputs has not been established. In this paper, therefore, "sound energy level" which represents the total sound energy radiated by a single event of a transient sound source is first defined as contrasted with the sound power level. Subsequently, its measuring methods by two kinds of sound pressure method and sound intensity method are investigated theoretically and experimentally on referring to the methods of sound power level measurement. PACS number : 43. 50. Cb, 43. 50. Pn, 43. 50. Yw sources, the way of describing and measuring their 1. INTRODUCTION acoustic outputs has not been established. In noise control problems, it is essential to obtain In this paper, "sound energy level" which repre- the information regarding the noise sources. -
Ebm-Papst Mulfingen Gmbh & Co. KG Postfach 1161 D-74671 Mulfingen
ebm-papst Mulfingen GmbH & Co. KG Postfach 1161 D-74671 Mulfingen Internet: www.ebmpapst.com E-mail: [email protected] Editorial contact: Katrin Lindner, e-mail: [email protected] Phone: +49 7938 81-7006, Fax: +49 7938 81-665 Focus on psychoacoustics How is a fan supposed to sound? Our sense of hearing works constantly and without respite, so our ears receive noises 24 hours a day. About 15,000 hair cells in the inner ear catch the waves from every sound, convert them to signals and relay the signals to the brain, where they are processed. This is the realm of psychoacoustics, a branch of psychophysics. It is concerned with describing personal sound perception in relation to measurable noise levels, i.e. it aims to define why we perceive noises as pleasant or unpleasant. Responsible manufacturers take the results of relevant research into account when developing fans. When we feel negatively affected by a sound, for example when it disturbs us, we call it noise pollution. Whether this is the case depends on many factors (Fig. 1). Among other things, our current situation plays a role, as do the volume and kind of sound. The same is true of fans, which need to fulfill different requirements depending on where they are used. For example, if they are used on a heat exchanger in a cold storage facility where people spend little time, low volume or pleasant sound is not an issue. But ventilation and air conditioning units in living and working areas have to meet much different expectations. -
Decibels, Phons, and Sones
Decibels, Phons, and Sones The rate at which sound energy reaches a Table 1: deciBel Ratings of Several Sounds given cross-sectional area is known as the Sound Source Intensity deciBel sound intensity. There is an abnormally Weakest Sound Heard 1 x 10-12 W/m2 0.0 large range of intensities over which Rustling Leaves 1 x 10-11 W/m2 10.0 humans can hear. Given the large range, it Quiet Library 1 x 10-9 W/m2 30.0 is common to express the sound intensity Average Home 1 x 10-7 W/m2 50.0 using a logarithmic scale known as the Normal Conversation 1 x 10-6 W/m2 60.0 decibel scale. By measuring the intensity -4 2 level of a given sound with a meter, the Phone Dial Tone 1 x 10 W/m 80.0 -3 2 deciBel rating can be determined. Truck Traffic 1 x 10 W/m 90.0 Intensity values and decibel ratings for Chainsaw, 1 m away 1 x 10-1 W/m2 110.0 several sound sources listed in Table 1. The decibel scale and the intensity values it is based on is an objective measure of a sound. While intensities and deciBels (dB) are measurable, the loudness of a sound is subjective. Sound loudness varies from person to person. Furthermore, sounds with equal intensities but different frequencies are perceived by the same person to have unequal loudness. For instance, a 60 dB sound with a frequency of 1000 Hz sounds louder than a 60 dB sound with a frequency of 500 Hz. -
Sound Power Measurement What Is Sound, Sound Pressure and Sound Pressure Level?
www.dewesoft.com - Copyright © 2000 - 2021 Dewesoft d.o.o., all rights reserved. Sound power measurement What is Sound, Sound Pressure and Sound Pressure Level? Sound is actually a pressure wave - a vibration that propagates as a mechanical wave of pressure and displacement. Sound propagates through compressible media such as air, water, and solids as longitudinal waves and also as transverse waves in solids. The sound waves are generated by a sound source (vibrating diaphragm or a stereo speaker). The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound and are forming the sound wave. At a fixed distance from the sound source, the pressure, velocity, and displacement of the medium vary in time. Compression Refraction Direction of travel Wavelength, λ Movement of air molecules Sound pressure Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure, caused by a sound wave. In air the sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit for sound pressure p is the pascal (symbol: Pa). 1 Sound pressure level Sound pressure level (SPL) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level. The standard reference sound pressure in the air or other gases is 20 µPa, which is usually considered the threshold of human hearing (at 1 kHz). -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
21-4 Sound and Sound Intensity One Way to Produce a Sound Wave in Air Is to Use a Speaker
Answer to Essential Question 21.3: Doubling the angular frequency, ", causes the frequency to double in part (a). This, in turn, means that that wave speed must double, in part (b). In part (c), the tension is proportional to the square of the speed, so the tension is increased by a factor of 4. In part (e), the maximum transverse speed is proportional to ", so the maximum transverse speed doubles. Finally, in part (f) we get a completely different value, y = – 0.39 cm. 21-4 Sound and Sound Intensity One way to produce a sound wave in air is to use a speaker. The surface of the speaker vibrates back and forth, creating areas of high and low density (corresponding to pressure a little higher than, and a little lower than, standard atmospheric pressure, respectively) in the region of air next to the speaker. These regions of high and low pressure (the sound wave) travel away from the speaker at the speed of sound. The air molecules, on average, just vibrate back and forth as the pressure wave travels through Medium Speed of sound them. In fact, it is through the collisions of air molecules that the sound wave is propagated. Because air molecules are not coupled Air (0°C) 331 m/s together, the sound wave travels through gas at a relatively low Air (20°C) 343 m/s speed (for sound!) of around 340 m/s. As Table 21.1 shows, the Helium 965 m/s speed of sound in air increases with temperature. Water 1400 m/s Steel 5940 m/s For other material, such as liquids or solids, in which there Aluminum 6420 m/s is more coupling between neighboring molecules, vibrations of the Table 21.1: Values of the speed of atoms and molecules (that is, sound waves) generally travel more sound through various media. -
Psychoacoustics and Its Benefit for the Soundscape
ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 92 (2006) 1 – 1 Psychoacoustics and its Benefit for the Soundscape Approach Klaus Genuit, André Fiebig HEAD acoustics GmbH, Ebertstr. 30a, 52134 Herzogenrath, Germany. [klaus.genuit][andre.fiebig]@head- acoustics.de Summary The increase of complaints about environmental noise shows the unchanged necessity of researching this subject. By only relying on sound pressure levels averaged over long time periods and by suppressing all aspects of quality, the specific acoustic properties of environmental noise situations cannot be identified. Because annoyance caused by environmental noise has a broader linkage with various acoustical properties such as frequency spectrum, duration, impulsive, tonal and low-frequency components, etc. than only with SPL [1]. In many cases these acoustical properties affect the quality of life. The human cognitive signal processing pays attention to further factors than only to the averaged intensity of the acoustical stimulus. Therefore, it appears inevitable to use further hearing-related parameters to improve the description and evaluation of environmental noise. A first step regarding the adequate description of environmental noise would be the extended application of existing measurement tools, as for example level meter with variable integration time and third octave analyzer, which offer valuable clues to disturbing patterns. Moreover, the use of psychoacoustics will allow the improved capturing of soundscape qualities. PACS no. 43.50.Qp, 43.50.Sr, 43.50.Rq 1. Introduction disturbances and unpleasantness of environmental noise, a negative feeling evoked by sound. However, annoyance is The meaning of soundscape is constantly transformed and sensitive to subjectivity, thus the social and cultural back- modified. -
Derivation of the Sabine Equation: Conservation of Energy
UIUC Physics 406 Acoustical Physics of Music Derivation of the Sabine Equation: Conservation of Energy Consider a large room of volume V = HWL (m3) with perfectly reflecting walls, filled with a uniform, steady-state (i.e. equilibrium) acoustic energy density wrtfa ,, at given frequency f (Hz) within the volume V of the room. Uniform energy density means that a given time t: 3 waa r,, t f w t , f constant (SI units: Joules/m ). The large room also has a small opening of area A (m2) in it, as shown in the figure below: H V A I rt,, f ac nAˆˆ, An W L In the steady-state, the rate of acoustical energy Wa input e.g. by a point sound source within the large room equals the rate at which acoustical energy is “leaking” out of the room through the hole of area A, i.e. the acoustical power input by the sound source in the room into the room = the acoustical power leaving the room through the hole of area A. In this idealized model of a room with perfectly reflecting walls, the hole of area A thus represents absorption of sound in a real room with finite reflectivity walls, i.e. walls that have some absorption associated with them. Suppose at time t = 0 the sound source in the room {located far from the hole} is turned off. Since the sound energy density is uniform in the room, the sound energy contained in the room Wtf,,,, wrtfdrwtf 33 drwtfV , will thus decrease with time, since aaVV a a acoustical energy is (slowly) leaking out of the room through the opening of area A. -
Measurement of Total Sound Energy Density in Enclosures at Low Frequencies Abstract of Paper
View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 17, 2017 brought to you by CORE provided by Online Research Database In Technology Measurement of total sound energy density in enclosures at low frequencies Abstract of paper Jacobsen, Finn Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.2934233 Publication date: 2008 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Jacobsen, F. (2008). Measurement of total sound energy density in enclosures at low frequencies: Abstract of paper. Acoustical Society of America. Journal, 123(5), 3439. DOI: 10.1121/1.2934233 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. WEDNESDAY MORNING, 2 JULY 2008 ROOM 242B, 8:00 A.M. TO 12:40 P.M. Session 3aAAa Architectural Acoustics: Case Studies and Design Approaches I Bryon Harrison, Cochair 124 South Boulevard, Oak Park, IL, 60302 Witew Jugo, Cochair Institut für Technische Akustik, RWTH Aachen University, Neustrasse 50, 52066 Aachen, Germany Contributed Papers 8:00 The detailed objective acoustic parameters are presented for measurements 3aAAa1. -
Sound Intensity and Power
Sound intensity and power Professor Phil Joseph Departamento de Engenharia Mecânica IMPORTANCE OF SOUND INTENSITY AND SOUND POWER MEASUREMENT . Sound pressure is the quantity usually used to quantify sound fields. However, it is often satisfactory as an measure of source because the pressure propagates as a wave which, due to multi-path interference, may lead to fluctuations with observer position. Sound pressure, unlike measures of sound energy, are not conserved. Performance of noise control systems often specified in terms of energy, e.g., transmission loss, absorption coefficient. INSTANTANEOUS INTENSITY Instantaneous sound intensity I(t) is the rate of acoustic energy flowing through unit area in unit time (Wm-2). If, in a point in space, the acoustic pressure p(t) produces at the same point a particle velocity u(t), the rate at which work is done on the fluid per unit area I(t) at time t is given by It ptut Note that I is a vector quantity in the direction of the particle velocity u ‘PROOF’ The work done on the fluid by Force F acting over a distance d in the direction of the force is Fd The work done per unit area A in unit time T, i.e., the sound intensity, is given by F d I x pu A T EXAMPLES FOR WHICH SOUND INTENSITY AND MEAN SQUARE PRESSURE ARE SIMPLY RELATED 1. Plane progressive waves 2. Far field of a source in free field 3. Hemi-diffuse field However, in general there is no simple relation between intensity and pressure ENERGY CONSERVATION Net rate of change of energy = Rate of energy in – Rate of energy out E I I xy x xy y xy t x t In 3 - dimensions E I I I .It 0 .I x y z t x x x RELATIONSHI[P BETWEEN SOUND IINTENSITY AND SOURCE SOUND POWER Applying Gauss's divergence theorem .A dV A.nˆ dS V S to E .I 0 t gives E W dV I.nˆ dS V t S GENERAL PROPERTIES OF SOUND INTENSITY FIELDS Sound intensity (sometimes called sound power flux density) is a vector quantity acting in the direction of the particle velocity vector u(t). -
The Human Ear Hearing, Sound Intensity and Loudness Levels
UIUC Physics 406 Acoustical Physics of Music The Human Ear Hearing, Sound Intensity and Loudness Levels We’ve been discussing the generation of sounds, so now we’ll discuss the perception of sounds. Human Senses: The astounding ~ 4 billion year evolution of living organisms on this planet, from the earliest single-cell life form(s) to the present day, with our current abilities to hear / see / smell / taste / feel / etc. – all are the result of the evolutionary forces of nature associated with “survival of the fittest” – i.e. it is evolutionarily{very} beneficial for us to be able to hear/perceive the natural sounds that do exist in the environment – it helps us to locate/find food/keep from becoming food, etc., just as vision/sight enables us to perceive objects in our 3-D environment, the ability to move /locomote through the environment enhances our ability to find food/keep from becoming food; Our sense of balance, via a stereo-pair (!) of semi-circular canals (= inertial guidance system!) helps us respond to 3-D inertial forces (e.g. gravity) and maintain our balance/avoid injury, etc. Our sense of taste & smell warn us of things that are bad to eat and/or breathe… Human Perception of Sound: * The human ear responds to disturbances/temporal variations in pressure. Amazingly sensitive! It has more than 6 orders of magnitude in dynamic range of pressure sensitivity (12 orders of magnitude in sound intensity, I p2) and 3 orders of magnitude in frequency (20 Hz – 20 KHz)! * Existence of 2 ears (stereo!) greatly enhances 3-D localization of sounds, and also the determination of pitch (i.e.