Time to Change!

Total Page:16

File Type:pdf, Size:1020Kb

Time to Change! Time to Change! “Railway Time” With the introduction of the railway, travel became faster. With every station keeping its own local mean time, the need for a synchronized time arose. The first railway company to implement a common time for all stations, appropriately named “Railway Time,” was the Great Western Railway in November 1840. By 1847, most railways were using “London Time,” the time set at the Royal Observatory in Greenwich. In 1847, the Railway Clearing House, an industry standards body, recommended that Greenwich Mean Time (GMT) be adopted at all stations as soon as the General Post Office permitted it. On December 1, 1847, the London and North Western Railway, as well as the Caledonian Railway, adopted “London Time,” and by 1848 most railways had followed. Unofficial GMT By 1844, almost all towns and cities in Britain had adopted GMT, though the time standard received some resistance, with railway stations keeping local mean time and showing “London Time” with an additional minute hand on the clock. In 1862, the Great Clock of Westminster, popularly known as Big Ben, was installed. Though not controlled by the Royal Observatory at Greenwich, it received hourly time signals from Greenwich and returned signals twice daily. Standard Time Adopted However, it was not until 1880 that the British legal system caught up with the rest of the country. With the Statutes (Definition of Time) Act (43 & 44 Vict.), Greenwich Mean Time was legally adopted throughout the island of Great Britain on August 2, 1880. Images of original British Railways South Region Clocks at Bat & Ball Station Above – Clock circa 1950 ex Ashford Station Below – Clock circa 1949 ex Dartford Station .
Recommended publications
  • Changing Time: Possible Effects on Peak Electricity Generation
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Crowley, Sara; FitzGerald, John; Malaguzzi Valeri, Laura Working Paper Changing time: Possible effects on peak electricity generation ESRI Working Paper, No. 486 Provided in Cooperation with: The Economic and Social Research Institute (ESRI), Dublin Suggested Citation: Crowley, Sara; FitzGerald, John; Malaguzzi Valeri, Laura (2014) : Changing time: Possible effects on peak electricity generation, ESRI Working Paper, No. 486, The Economic and Social Research Institute (ESRI), Dublin This Version is available at: http://hdl.handle.net/10419/129397 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen
    [Show full text]
  • The Carrying Trade and the First Railways in England, C1750-C1850
    The Carrying Trade and the First Railways in England, c1750-c1850 Carolyn Dougherty PhD University of York Railway Studies November 2018 Abstract Transport and economic historians generally consider the change from moving goods principally on roads, inland waterways and coastal ships to moving them principally on railways as inevitable, unproblematic, and the result of technological improvements. While the benefits of rail travel were so clear that most other modes of passenger transport disappeared once rail service was introduced, railway goods transport did not offer as obvious an improvement over the existing goods transport network, known as the carrying trade. Initially most railways were open to the carrying trade, but by the 1840s railway companies began to provide goods carriage and exclude carriers from their lines. The resulting conflict over how, and by whom, goods would be transported on railways, known as the carrying question, lasted more than a decade, and railway companies did not come to dominate domestic goods carriage until the 1850s. In this study I develop a fuller picture of the carrying trade than currently exists, highlighting its multimodal collaborative structure and setting it within the ‘sociable economy’ of late eighteenth- and early nineteenth-century England. I contrast this economy with the business model of joint-stock companies, including railway companies, and investigate responses to the business practices of these companies. I analyse the debate over railway company goods carriage, and identify changes in goods transport resulting from its introduction. Finally, I describe the development and outcome of the carrying question, showing that railway companies faced resistance to their attempts to control goods carriage on rail lines not only from the carrying trade but also from customers of goods transport, the government and the general public.
    [Show full text]
  • GCSE (9-1) Astronomy Distance Learning
    New Pupil Toolkit for GCSE (9-1) Astronomy GCSE (9-1) Astronomy Pupil Worksheet Week 41 Topic 4.5 Spec. refs 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21 1. Which of the following pairs indicate identical times? x A Apparent Solar Time and UT x B GMT and Daylight Saving Time x C Local Mean Time and Mean Solar Time x D UT and Daylight Saving Time (1) 2. Which of the following Astronomy students is correct? Chico: At longitudes that are Roxanna: At longitudes that are east of Greenwich, the Local east of Greenwich, the Local Mean Time is always later than Mean Time is always earlier than GMT. GMT. Your answer: . (1) 3. By how many degrees does the Earth rotate on its axis in 60 minutes? Your answer: . (1) New Pupil Toolkit for GCSE (9-1) Astronomy © Mickledore Publishing 2017 New Pupil Toolkit for GCSE (9-1) Astronomy 4. How long does it take for the Earth to rotate on its axis through an angle of 30°? Your answer: . (1) 5. How many minutes does it take for the Earth to rotate through an angle of 1°? Your answer: . min (1) 6. Erik and Sally are studying Astronomy in different parts of the world; at an agreed time they communicate with each other via WhatsApp. Erik says that his Local Mean Time is 14:32; Sally says that her Local Mean Time is 17:48. (a) Which student is further east? . (1) (b) Determine the difference in longitude between the two students.
    [Show full text]
  • Field Astronomy Circumpolar Star at Elongation ➢ at Elongation a Circumpolar Star Is at the Farthest Position from the Pole Either in the East Or West
    Field Astronomy Circumpolar Star at Elongation ➢ At elongation a circumpolar star is at the farthest position from the pole either in the east or west. ➢ When the star is at elongation (East or West), which is perpendicular to the N-S line. ➢ Thus the ZMP is 90° as shown in the figure below. Distances between two points on the Earth’s surface ➢ Direct distance From the fig. above, in the spherical triangle APB P = Difference between longitudes of A and B BP = a = co-latitude of B = 90 – latitude of B AP = b = co-latitude of A = 90 – latitude of A Apply the cosine rule: cosp− cos a cos b CosP = sinab sin Find the value of p = AB Then the distance AB = arc length AB = ‘p’ in radians × radius of the earth ➢ Distance between two points on a parallel of latitude Let A and B be the two points on the parallel latitude θ. Let A’ and B’ be the corresponding points on the equator having the same longitudes (ФB, ФA). Thus from the ∆ O’AB AB = O’B(ФB - ФA) From the ∆ O’BO o O’B = OB’ sin (90- θ) Since =BOO ' 90 = R cos θ where R=Radius of the Earth. AB= (ФB - ФA) R cos θ where ФB , ФA are longitudes of B and A in radians. Practice Problems 1. Find the shortest distance between two places A and B on the earth for the data given below: Latitude of A = 14° N Longitude of A = 60°30‘E Latitude of B = 12° N Longitude of A = 65° E Find also direction of B from A.
    [Show full text]
  • The Railway Clerks' Association, 1919-1939
    Open Research Online The Open University’s repository of research publications and other research outputs The Railway Clerks’ Association, 1919-1939 Thesis How to cite: McMahon, Anthony (1993). The Railway Clerks’ Association, 1919-1939. PhD thesis The Open University. For guidance on citations see FAQs. c 1992 Anthony McMahon https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.00010181 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk ANTHONY MCMAHON, B.A. (HONS, ) THE RAILWAY CLERKS’ ASSOCIATION, 1919-1939 Submitted for the degree of Ph. D in History, Open University October 1992 - 1 ProQuest Number: C347624 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest C347624 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, Ml 48106- 1346 The Railway Clerks' Association 1919 - 1939 Abstract This thesis analyses the history of the Railway Clerks' Association between 1919 and 1939.
    [Show full text]
  • Civil Time Author(S): John Milne Source: the Geographical Journal, Vol
    Civil Time Author(s): John Milne Source: The Geographical Journal, Vol. 13, No. 2 (Feb., 1899), pp. 173-194 Published by: geographicalj Stable URL: http://www.jstor.org/stable/1774359 Accessed: 27-06-2016 09:17 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Wiley, The Royal Geographical Society (with the Institute of British Geographers) are collaborating with JSTOR to digitize, preserve and extend access to The Geographical Journal This content downloaded from 128.197.26.12 on Mon, 27 Jun 2016 09:17:34 UTC All use subject to http://about.jstor.org/terms CIVIL TIME. 173 ef the seventh section, under which the coasts, peninsulas and isth- muses, and islands are dealt with. This is followed by a section on C' The World of the Water," and another on "' Mountains and Plains." There are many special maps in the text, and ample references appended -to each section. This brief resume may afford some idea of the richly suggestive work which every serious student of geography is bound to consult. For the sake of geographical teachers who cannot read German, it is much to be wished that some enterprising publisher would issue an English translation; he would have to do so, we fear, as a labour of love, for it is doubtful if the sale would prove remunerative, at least in the imme- diate future.
    [Show full text]
  • Chapter 18 Time
    CHAPTER 18 TIME TIME IN NAVIGATION 1800. Solar Time Sun will be on the observer’s meridian again when the Earth has moved to point C in its orbit. Thus, during the course of The Earth’s rotation on its axis causes the Sun and a day the Sun appears to move eastward with respect to the other celestial bodies to appear to move across the sky from stars. east to west each day. If a person located on the Earth’s The apparent positions of the stars are commonly equator measured the time interval between two successive reckoned with reference to an imaginary point called the transits overhead of a very distant star, he would be vernal equinox, the intersection of the celestial equator and measuring the period of the Earth’s rotation. If he then the ecliptic. The period of the Earth’s rotation measured made a similar measurement of the Sun, the resulting time with respect to the vernal equinox is called a sidereal day. would be about 4 minutes longer. This is due to the Earth’s The period with respect to the Sun is called an apparent motion around the Sun, which continuously changes the solar day. apparent place of the Sun among the stars. Thus, during the course of a day the Sun appears to move a little to the east When measuring time by the Earth’s rotation, using the among the stars, so that the Earth must rotate on its axis actual position of the Sun, or the apparent Sun, results in through more than 360° in order to bring the Sun overhead apparent solar time.
    [Show full text]
  • Freight Train Operation in Inter-War Britain
    Management Information and Management Practice: A Freight Train Operation in Inter-War Britain Roy A. Edwards Department of Economic History, The London School of Economics Phd Dissertation UMI Number: U616001 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U616001 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 I Hr££ £ S F 7382. POLITICAL tOMl C & ACKNOWLEDGEMENTS A thesis always involves contributions and support from family and friends, as well as colleagues. It was my good fortune that in the writing of the thesis, colleagues became friends. In particular, my supervisor Dudley Baines provided insights both into railway operation and analysis. Mary Morgan as my second supervisor provided a critical review of early drafts which both built confidence and demolished long cherished ideas. To them both I owe a great deal. In my more desperate moments, Linda Sampson provided an insight into the correct use of Word Perfect and prevented, or at least ameliorated, a complete loss of mental faculties as the submission date drew near. I am also greatful to Rajiv Ball who helped in the final preparations for submission.
    [Show full text]
  • The Solar System & Time
    THE SOLAR SYSTEM & TIME The measurement of the passage of time is based upon observations of events occurring at regular intervals. The two repetitive events which most influence life on Earth are the rotation of the Earth on its axis. Causing day and night, and the movement of the Earth in its orbit around the Sun, causing the seasons. THE EARTH'S ORBIT The orbit of a planet around the Sun conforms with Kepler's Laws of Planetary Motion which state :- 1. The orbit of a planet is an ellipse, with the Sun at one of the foci. 2. The line joining the planet to the Sun, known as the radius vector, sweeps out equal areas in equal in equal intervals of time. A Y SAX SYC C X In the above sketch the planet (P) moves anticlockwise in its orbit and is at its closest position to the Sun at position A which is called PERIHELION. At Perihelion the Earth is about 91½ million miles from the Sun and occurs on January ±3. At position C the planet is furthest from the Sun and is known as APHELION. At Aphelion the Earth is about 94½ million miles from the Sun and occurs on ±July 3. The mean distance of the Earth from the Sun is about 93 million miles. According to Kepler's Law the radius vector sweeps out equal areas in equal intervals of time. If the area SAX equals the area SYC then as the distance AX is greater than the distance CY and the orbital speed of the planet is faster at Perihelion than at Aphelion.
    [Show full text]
  • Bibliography
    Bibliography THE following bibliography lists those sources which have been most helpful to the author in the preparation of this volume. Many of the items vary in quality considerably and the reader wishing to pursue his studies further will find those sources marked with an asterisk the most helpful. All works are published in the United Kingdom unless other­ wise stated. BOOKS AND PAMPHLETS W. M. AcwoRTH, The Elements ifRailway Economics ( Igo5) *- The Elements ifRailway Economics (I g24 ed.) C. J. ALLEN, Locomotive Practice and Performance in the Twentieth Century (I g4g) - The Great Eastern Railway (Ig55) *G. F. ALLEN, British Rail After Beeching ( Ig66) T. C. BARKER and M. RoBBINS, A History if London Trans­ port, vol. I, The Nineteenth Century (I g63) B. BAYLiss, European Transport (Ig65) R. BELL, History if the British Railways During the War, I93!}­ I945 (Ig46) W. BoLLAND, The Railways and the Nation (I gog) R. BRADY, Crisis in Britain (Ig5o, University of California Press) BRITISH ELECTRICAL DEVELOPMENT AssociATION, The Case for Electrification ifthe Railways (I g35) A. BROWN, The Future ifthe Railways (Ig28) - The Railway Problem (I g32) P. BuRTT, Railway Rates, Principles and Problems ( Ig26) - Railway Electrification and Traffic Problems (I g2g) R. CALVERT, TheFutureifBritishRailways (Ig65) BIBLIOGRAPHY 227 C. D. CAMPBELL, British Railways in Boom and Depression: An Essay in Trade Fluctuations and their Effects, 1878-1930 (I932) D. N. CHESTER, Public Control ofRoad Passenger Transport (I 936) H. A. CLEGG and T. E. CHESTER, The Future of Nationalisa­ tion (I953) E. S. Cox, British Railways' Experience with Diesel and Electric Traction (I 96 I) E.
    [Show full text]
  • The Astronomical League |
    ASTRONOMICAL LEAGUE A FEDERATION OF ASTRONOMICAL SOCIETIES A NON-PROFIT ORGANIZATION To promote the science of astronomy: By fostering astronomical education; By providing incentives for astronomical observation and research; By assisting communication among amateur astronomical societies. ASTRO NOTES Produced by the Astronomical League Note 10: What Time Is It? There are many methods used to keep time, each having its own special use and advantage. Until recently, when atomic clocks became available, time was reckoned by the Earth's motions: one rotation on its axis was a "day" and one revolution about the Sun was a "year." An hour was one twenty-fourth of a day, and so on. It was convenient to use the position of the Sun in the sky to measure the various intervals. Apparent Time This is the time kept by a sundial. It is a direct measure of the Sun's position in the sky relative to the position of the observer. Since it is dependent on the observer's location, it is also a local time. Being measured according to the true solar position, it is subject to all the irregularities of the Earth's motion. The reference time is 12:00 noon when the true Sun is on the observer's meridian. Mean Time Many of the irregularities in the Earth's motion are due to its eccentric orbit and tidal effects. In order to add some consistency to the measure of time, we use the concept of mean time. Mean time uses the position of a fictitious "mean Sun" which moves smoothly and uniformly across the sky and is insensitive to the Earth's irregularities.
    [Show full text]
  • Maps.RLY Railway Companies/Authors Only
    Railway Collection Railway Company/author List. Some items are listed as railway company/author [Not known] [manuscript list] [Not known] [Various] Adams, Brian Warren Alexandra Docks and Railways American Railways Anstruther & St. Andrews Railway Armstrong Whitworth & Co. Ltd. Arthur & C. Harston Arthur Balfour Ashby-de-la-Zouch R.D.C. Atchison, Topeka and Santa Fe Railway Co. Atlantic Coast Line Railroad Balfour Beatty Banff, Portsoy Strathsla Railway Bangor & Carnarvon Barry Dock & Railways Barry Railway Bayliss Jones & Bayliss Ltd. Beadel & Sons Beale & Co Bedford & Cambridge Railway Bergen Steamship Company Berks & Hants Railway Birkenhead Railway Birmingham & Derby Junction Railway Birmingham Corporation Birmingham Locomotive Club Birmingham University Transport Society Body, Geoffrey Bolsover Colliery Co. Ltd. Borough Engineer, Southend-on-Sea Borough of Chesterfield Boston & Albany Railroad Boys & Tweedie Bradford Corporation 21 November 2019 Page 1 of 9 Bradford Corporation Waterworks Bradshaw's Braithwaite & Buttermere Railway Branch Line Society Bristol Corporation Bristol Port Extension Railways British Oxygen Company British Rail British Rail International British Railways British Railways (Western Region) British Railways? Bute and Great Western Railway Bute Docks Company C.J. Mander Caledonian Railway Cambrian Railways Cambridge & Lincoln Railway Cambridge & Oxford Railway Cambridge Royston & [Waddon?] Railway Cannock Chase Railway Canvey Island Urban District Council Cardiff Railway Company Central Wales Railway Cheltenham
    [Show full text]