Population Genetics and Phylogenetic Context of Weed Evolution in the Genus Amaranthus: Amaranthaceae) Katherine Waselkov Washington University in St

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetics and Phylogenetic Context of Weed Evolution in the Genus Amaranthus: Amaranthaceae) Katherine Waselkov Washington University in St Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 8-12-2013 Population Genetics and Phylogenetic Context of Weed Evolution in the Genus Amaranthus: Amaranthaceae) Katherine Waselkov Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Waselkov, Katherine, "Population Genetics and Phylogenetic Context of Weed Evolution in the Genus Amaranthus: Amaranthaceae)" (2013). All Theses and Dissertations (ETDs). 1162. https://openscholarship.wustl.edu/etd/1162 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Evolution, Ecology and Population Biology Dissertation Examination Committee: Kenneth M. Olsen, Chair James M. Cheverud Allan Larson Peter H. Raven Barbara A. Schaal Alan R. Templeton Population Genetics and Phylogenetic Context of Weed Evolution in the Genus Amaranthus (Amaranthaceae) by Katherine Elinor Waselkov A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2013 St. Louis, Missouri © Copyright 2013 by Katherine Elinor Waselkov. All rights reserved. TABLE OF CONTENTS List of Tables .................................................................................................................... vi List of Figures .................................................................................................................. vii Acknowledgments .............................................................................................................. x Abstract of the Dissertation .......................................................................................... xvi Introduction of the Dissertation .......................................................................................1 Study System: The Genus Amaranthus ...................................................................6 Study System: Amaranthus tuberculatus .................................................................8 Dissertation Overview ...........................................................................................10 Literature Cited ......................................................................................................10 Chapter 1: Molecular Phylogeny of Amaranthus (Amaranthaceae) and Trait Associations with Weediness in the Genus ..........................................................17 Introduction ............................................................................................................18 Materials and Methods ...........................................................................................22 Taxon Sampling ....................................................................................................... 22 DNA Extraction and Sequencing ............................................................................. 23 Phylogenetic Analyses ............................................................................................. 25 Topology Testing ..................................................................................................... 28 Trait Associations with Weediness .......................................................................... 29 Results ....................................................................................................................31 DNA Sequencing ...................................................................................................... 31 Phylogenetic Trees ................................................................................................... 32 Topology Tests ......................................................................................................... 41 ii Trait Associations with Weediness .......................................................................... 43 Discussion ..............................................................................................................44 Phylogenetic Relationship and Topology Tests ....................................................... 44 Trait Associations with Weediness .......................................................................... 52 Literature Cited ......................................................................................................56 Tables and Figures .................................................................................................64 Chapter 2: Population Genetics and Origin of the Native Midwestern Agricultural Weed, Waterhemp (Amaranthus tuberculatus) .......................................................................109 Introduction ..........................................................................................................110 Materials and Methods .........................................................................................112 Study System .......................................................................................................... 112 Sample Collection .................................................................................................. 114 DNA Extraction and Genotyping ........................................................................... 115 Microsatellite Data Analysis .................................................................................. 116 Results ..................................................................................................................120 Genetic Diversity and Isolation by Distance .......................................................... 120 Population Structure ............................................................................................... 121 Discussion ............................................................................................................124 Literature Cited ....................................................................................................133 Tables and Figures ...............................................................................................139 Chapter 3: Agricultural and Local Adaptation Shape Invasiveness in Waterhemp, Amaranthus tuberculatus (Amaranthaceae) ................................................................163 Introduction ..........................................................................................................164 Materials and Methods .........................................................................................168 iii Common Garden Design ........................................................................................ 168 Plant Measurements, 2010 ..................................................................................... 172 Plant Measurements, 2011 ..................................................................................... 173 Data Analysis ......................................................................................................... 174 Results ..................................................................................................................175 Plant Height ............................................................................................................ 175 Days to Flowering .................................................................................................. 176 Mature Plant Data ................................................................................................... 177 Dry Above-Ground Biomass .................................................................................. 178 Analyses by Plant Sex ............................................................................................ 178 Discussion ............................................................................................................179 Literature Cited ....................................................................................................188 Tables and Figures ...............................................................................................195 Chapter 4: Presence of Agriculturally-Adaptive Herbicide Resistance Alleles in Natural Populations of Ohio Waterhemp (Amaranthus tuberculatus) ....................................212 Introduction ..........................................................................................................213 Materials and Methods .........................................................................................217 Sample Collection .................................................................................................. 217 Greenhouse Herbicide Screening ........................................................................... 217 PCR-Restriction Enzyme Assay ............................................................................. 219 ALS Sequencing ...................................................................................................... 221 Results ..................................................................................................................221 Greenhouse Herbicide Screening ..........................................................................
Recommended publications
  • Amaranthus Pumilus (Seabeach Amaranth)
    Bartonia No. 61, 2002-News and Notes Amaranthus pumilus Raf. (Seabeach Amaranth, Amaranthaceae) Rediscovered in Sussex County, Delaware In August of 2000, Amaranthus pumilus was rediscovered in Sussex Co., Delaware after 125 years without a sighting. It was first collected in Delaware in 1875 by Albert Commons (10 September 1875, A. Commons, s.n., "seabeach, Baltimore Hundred, Delaware," PH). Amaranthus pumilus was federally listed as threatened by the U.S. Fish and Wildlife Service in 1993. Historically, this species was known from Massachusetts south to South Carolina (Weakley et al. 1996). Amaranthus pumilus was reported as rediscovered at Assateague Island National Seashore, Worcester County, Maryland in 1998 (Ramsey 2000). Prior to rediscovery on Assateague Island and in Sussex County, A. pumilus was extant on Long Island, New York, and in North Carolina and South Carolina. Lisa Marie Kendall of the Delaware Natural Heritage Program, Division of Fish and Wildlife, Delaware Department of Natural Resources discovered the first plants on 7 August 2000. Subsequent surveys revealed a total of 41 individuals scattered over 22 kilometers of Atlantic shoreline. All plants found are within the boundaries of Delaware Seashore and Fenwick Island State Parks. The largest number of plants (28) was found within a 1.5-km stretch of shoreline near the swimming beach at Delaware Seashore State Park. This section of beach is the only area where A. pumilus was found that is off-limits to vehicular traffic. This area provides the best habitat for the long-term survival of A. pumilus. Individual plants were found growing on relatively open sand near the base of the primary foredune.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Comparison of Sediment Deposition in Reservoirs of Four Kansas Watersheds David P
    Comparison of Sediment Deposition in Reservoirs of Four Kansas Watersheds David P. Mau and Victoria G. Christensen Reservoirs are a vital source of water Kansas in 1995. Nine supply, provide recreational opportunities, reservoir studies have been support diverse aquatic habitat, and carried out in cooperation provide flood protection throughout with the Bureau of Kansas. Understanding agricultural, Reclamation, the city of industrial, and urban effects on reservoirs Wichita, Johnson County is important not only for maintaining Unified Wastewater acceptable water quality in the reservoirs Districts, the Kansas but also for preventing adverse Department of Health and environmental effects. Excessive sediment Environment, and (or) the can alter the aesthetic qualities of Kansas Water Office. These reservoirs and affect their water quality studies were supported in and useful life. part by the Kansas State Water Plan Fund and Introduction evaluated sediment deposition along with Figure 1. Bottom-sediment cores were collected with a gravity Reservoir sediment studies are selected chemical corer mounted on a pontoon boat. The corer is lowered to a important because of the effect that constituents in sediment designated distance above the sediment and allowed to free sediment accumulation has on the quality cores (fig. 1) from fall to penetrate through the entire thickness of reservoir of water and useful life of the reservoir. reservoirs located in bottom sediment. Sediment deposition can affect benthic various climatic, organisms and alter the dynamics of the topographic, and geologic landscape annual precipitation ranges from about aquatic food chain. Reservoir sediment regions throughout Kansas and southern 24 inches at Webster Reservoir in north- studies also are important in relation to Nebraska.
    [Show full text]
  • Lake Level Management Plans Water Year 2021
    LAKE LEVEL MANAGEMENT PLANS WATER YEAR 2021 Kansas Water Office September 2020 Table of Contents U.S. ARMY CORPS OF ENGINEERS, KANSAS CITY DISTRICT .................................................................................................................................... 3 CLINTON LAKE ........................................................................................................................................................................................................................................................................4 HILLSDALE LAKE ......................................................................................................................................................................................................................................................................6 KANOPOLIS LAKE .....................................................................................................................................................................................................................................................................8 MELVERN LAKE .....................................................................................................................................................................................................................................................................10 MILFORD LAKE ......................................................................................................................................................................................................................................................................12
    [Show full text]
  • The Probable Use of Genus Amaranthus As Feed Material for Monogastric Animals
    animals Review The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals Tlou Grace Manyelo 1,2 , Nthabiseng Amenda Sebola 1 , Elsabe Janse van Rensburg 1 and Monnye Mabelebele 1,* 1 Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; [email protected] (T.G.M.); [email protected] (N.A.S.); [email protected] (E.J.v.R.) 2 Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa * Correspondence: [email protected]; Tel.: +27-11-471-3983 Received: 13 July 2020; Accepted: 5 August 2020; Published: 26 August 2020 Simple Summary: In monogastric production, feeds account for about 50–70% of the total costs. Protein ingredients are one of the most expensive inputs even though they are not included in large quantities as compared to cereals. Monogastric animal industries are faced with a major problem of limited protein sources, moreover, the competition for plant materials is expected to further increase feed prices. Therefore, to tackle this problem, interventions are required to find alternative and cost-effective protein sources. One identified crop that meets these requirements is amaranth. Studies have shown the potential and contribution that amaranth has as an alternative ingredient in diets for monogastric animals. Therefore, the main purpose of this review is to provide a detailed understanding of the potential use of amaranth as feed for monogastric animals, and further indicate processing techniques are suitable to improve the utilization of grain amaranth and leaves.
    [Show full text]
  • Weed Risk Assessment for Vitex Rotundifolia L. F. (Lamiaceae)
    Weed Risk Assessment for Vitex United States rotundifolia L. f. (Lamiaceae) – Beach Department of Agriculture vitex Animal and Plant Health Inspection Service June 4, 2013 Version 2 Left: Infestation in South Carolina growing down to water line and with runners and fruit stripped by major winter storm (Randy Westbrooks, U.S. Geological Survey, Bugwood.org). Right: A runner with flowering shoots (Forest and Kim Starr, Starr Environmental, Bugwood.org). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Vitex rotundifolia Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it.
    [Show full text]
  • Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: a Mini-Review
    applied sciences Review Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: A Mini-Review Olusanya N. Ruth 1,*, Kolanisi Unathi 1,2, Ngobese Nomali 3 and Mayashree Chinsamy 4 1 Disipline of Food Security, School of Agricultural, Earth and Environmental Science University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; [email protected] 2 Department of Consumer Science, University of Zululand, 24 Main Road, KwaDlangezwa, Uthungulu 3886, South Africa 3 Department of Botany and Plant Biotectechnology, University of Johannesburg, Auckland Park, Johannesburg 2092, South Africa; [email protected] 4 DST-NRF-Center, Indiginous Knowledge System, University of KwaZulu-Natal, Westville 3629, South Africa; [email protected] * Correspondence: [email protected] Abstract: Amaranthus is a C4 plant tolerant to drought, and plant diseases and a suitable option for climate change. This plant could form part of every region’s cultural heritage and can be transferred to the next generation. Moreover, Amaranthus is a multipurpose plant that has been identified as a traditional edible vegetable endowed with nutritional value, besides its fodder, medicinal, nutraceutical, industrial, and ornamental potentials. In recent decade Amaranthus has received increased research interest. Despite its endowment, there is a dearth of awareness of its numerous potential benefits hence, it is being underutilized. Suitable cultivation systems, innovative Citation: Ruth, O.N.; Unathi, K.; processing, and value-adding techniques to promote its utilization are scarce. However, a food-based Nomali, N.; Chinsamy, M. approach has been suggested as a sustainable measure that tackles food-related problem, especially Underutilization Versus in harsh weather. Thus, in this review, a literature search for updated progress and potential Nutritional-Nutraceutical Potential of uses of Amaranthus from online databases of peer-reviewed articles and books was conducted.
    [Show full text]
  • Flood Impact Planning for High Water Release Rates from Tuttle Creek Dam
    Flood Impact Planning for High Water Release Rates from Tuttle Creek Dam Prepared by: City of Manhattan, Public Works Department May 20, 2019 2 Tuttle Creek Lake Drainage Basin 25% of Kansas Basin Flood Storage 3 Tuttle Creek Max Pool Elevation by Year Rank Year Pool Elevation (FT 1 1993 1137.77 2 1973 1127.88 3 2019 1125.10 4 1984 1112.30 5 1987 1111.92 6 2015 1110.91 7 1979 1109.10 8 2010 1106.54 9 1995 1105.02 10 2018 1104.10 6 Action Stages in Relationship to Tuttle Creek Dam Elevations • 1102 Gets in Spillway • Call United States Army Corps of Engineers (USACE) at least once a week. • 1114 Action Stage • Bring Emergency Services and PW together weekly to discuss USACE outlook . • 1116 Flood Waters Touches the Gates • Schedule weekly meetings with emergency management services. • Update and draft public education and preparedness information. • 1125 • Identify and notify at risk populations of flood risks. • Distributes family preparedness guide to responders. • 1126 Daily Joint EOC meetings • Identify shelter and staging areas that will not be effected. • PIO group drafts advisories, watch, evacuation route maps, flood warning messages. • Monitor and track all river gauges and lake elevations. • 1132 • Establish a 12 hour operational period with briefing. • Secure shelter locations, request shelter support from American Red Cross and Salvation Army. • Ramp up sandbag filling stations and stockpile sand. 7 Public Works Actions Taken • Developed 42 different flood maps for various releases rates and back flow conditions along Kansas
    [Show full text]
  • Vitex Rotundifolia L.F
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Vitex rotundifolia L.f. USDA Plants Code: VIRO80 Common names: Roundleaf chastetree, beach vitex, chasteberry, monk's pepper Native distribution: Asia (China, Japan), India, Sri Lanka, Mauritius, Australia, Pacific Islands (inlcuding Hawaii) Date assessed: 3 June 2009; edited August 19, 2009 Assessors: Steve Glenn, Gerry Moore Reviewers: LIISMA SRC Date Approved: August 19, 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Not Present Moderate 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 40 ) 37 2 Biological characteristic and dispersal ability 25 ( 25 ) 20 3 Ecological amplitude and distribution 25 ( 25 ) 4 4 Difficulty of control 10 ( 10 ) 8 Outcome score 100 ( 100 )b 73.00 a † Relative maximum score 73.00 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • SPECIES L RESEARCH ARTICLE
    SPECIES l RESEARCH ARTICLE Species Sexual systems, pollination 22(69), 2021 modes and fruiting ecology of three common herbaceous weeds, Aerva lanata (L.) Juss. Ex Schult., Allmania nodiflora (L.) To Cite: Solomon Raju AJ, Mohini Rani S, Lakshminarayana G, R.Br. and Pupalia lappacea (L.) Venkata Ramana K. Sexual systems, pollination modes and fruiting ecology of three common herbaceous weeds, Aerva lanata (L.) Juss. Ex Schult., Allmania nodiflora (L.) R.Br. and Juss. (Family Amaranthaceae: Pupalia lappacea (L.) Juss. (Family Amaranthaceae: Sub-family Amaranthoideae). Species, 2021, 22(69), 43-55 Sub-family Amaranthoideae) Author Affiliation: 1,2Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India Solomon Raju AJ1, Mohini Rani S2, Lakshminarayana 3Department of Environmental Sciences, Gayathri Vidya Parishad College for Degree & P.G. Courses (Autonomous), G3, Venkata Ramana K4 M.V.P. Colony, Visakhapatnam 530 017, India 4Department of Botany, Andhra University, Visakhapatnam 530 003, India ABSTRACT Correspondent author: A.J. Solomon Raju, Mobile: 91-9866256682 Aerva lanata and Pupalia lappacea are perennial herbs while Allmania nodiflora is an Email:[email protected] annual herb. A. lanata is dioecious with bisexual and female plants while P. lappacea and A. nodiflora are hermaphroditic. In P. lappacea, the flowers are borne as triads Peer-Review History with one hermaphroditic fertile flower and two sterile flowers alternately along the Received: 25 December 2020 entire length of racemose inflorescence. A. lanata and A. nodiflora flowers are Reviewed & Revised: 26/December/2020 to 27/January/2021 nectariferous while P. lappacea flowers are nectarless. The hermaphroditic flowers of Accepted: 28 January 2021 Published: February 2021 A.
    [Show full text]
  • Morphological and Anatomical Features of the Flowers and Fruits During the Development of Chamissoa Altissima (Jacq.) Kunth (Amaranthaceae)
    1425 Vol.53, n. 6: pp.1425-1432, November-December 2010 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Morphological and Anatomical Features of the Flowers and Fruits during the Development of Chamissoa altissima (Jacq.) Kunth (Amaranthaceae) Sayuri de Oliveira Oyama, Luiz Antonio de Souza *, Júnior Cesar Muneratto and Adriana Lenita Meyer Albiero Departamento de Biologia; Universidade Estadual de Maringá; Av. Colombo, 5790; 87020-900; Maringá - PR - Brasil ABSTRACT The morphology and structure of the flowers and fruits of Chamissoa altissima (Jacq.) Kunth during the development were analyzed. The plant material was fixed in FAA 50, embedded in historesin and sectioned according to standard techniques. The flowers presented tepals with betalain and homogeneous mesophyll; receptacular nectary; anthers with epidermis, endothecium, one middle layer, and uninucleate tapetum; and monocarpelar ovary with homogeneous mesophyll. The fruit was a circumscissile capsule, presented the same number of cellular layers that the ovary, and possessed subendocarpic sclerenchyma. The seed was bitegmic, exotestal and perispermic. Key words: Perianth, stamen, gynoecium, pericarp, seed INTRODUCTION investigations are scarce. In the forest remnants of the Northwest region of Paraná (less than 1% of Lianas or vines are vascular plants that are rooted native vegetation) a diversity of liana species in the ground and maintain their stems in a more occurs, belonging to different families. Chamissoa or less erect position by making the use of the altissima (Jacq.) Kunth is abundant in these forest other objects for support. This habit of the growth remnants in which the reproductive organs still has the advantage of enabling the plant to get have not been investigated.
    [Show full text]