Molecular Phylogeny of Laetiporus and Other Brown Rot Polypore Genera in North America

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of Laetiporus and Other Brown Rot Polypore Genera in North America Mycologia, 100(3), 2008, pp. 417–430. DOI: 10.3852/07-124R2 # 2008 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular phylogeny of Laetiporus and other brown rot polypore genera in North America Daniel L. Lindner1 Key words: evolution, Fungi, Macrohyporia, Mark T. Banik Polyporaceae, Poria, root rot, sulfur shelf, Wolfiporia U.S.D.A. Forest Service, Madison Field Office of the extensa Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726 INTRODUCTION The genera Laetiporus Murrill, Leptoporus Que´l., Phaeolus (Pat.) Pat., Pycnoporellus Murrill and Wolfi- Abstract: Phylogenetic relationships were investigat- poria Ryvarden & Gilb. contain species that possess ed among North American species of Laetiporus, simple septate hyphae, cause brown rots and produce Leptoporus, Phaeolus, Pycnoporellus and Wolfiporia annual, polyporoid fruiting bodies with hyaline using ITS, nuclear large subunit and mitochondrial spores. These shared morphological and physiologi- small subunit rDNA sequences. Members of these cal characters have been considered important in genera have poroid hymenophores, simple septate traditional polypore taxonomy (e.g. Gilbertson and hyphae and cause brown rots in a variety of substrates. Ryvarden 1986, Gilbertson and Ryvarden 1987, Analyses indicate that Laetiporus and Wolfiporia are Ryvarden 1991). However recent molecular work not monophyletic. All North American Laetiporus indicates that Laetiporus, Phaeolus and Pycnoporellus species formed a well supported monophyletic group fall within the ‘‘Antrodia clade’’ of true polypores (the ‘‘core Laetiporus clade’’ or Laetiporus s.s.) with identified by Hibbett and Donoghue (2001) while the exception of L. persicinus, which showed little Leptoporus and Wolfiporia fall respectively within the affinity for any genus for which sequence data are ‘‘phlebioid’’ and ‘‘core polyporoid’’ clades of true available. Based on data from GenBank, the southern polypores (Binder et al 2005). hemisphere species L. portentosus also fell well Recent molecular and mating studies also have led outside the core Laetiporus clade. Wolfiporia dilatohy- to a revision of genus Laetiporus in North America pha was found to represent a sister group to the core (Banik et al 1998, Banik and Burdsall 1999, Banik and Laetiporus clade. Isolates of Phaeolus, Pycnoporellus Burdsall 2000), which formerly contained only L. and members of the core Laetiporus clade all fell sulphureus (Bull.) Murrill and L. persicinus (Berk & within the Antrodia clade of polypores, while Leptoporus mollis and Laetiporus portentosus fell within M.A. Curtis) Gilbertson. Burdsall and Banik (2001) the phlebioid clade of polypores. Wolfiporia cocos concluded that genus Laetiporus contains at least six isolates also fell in the Antrodia clade, in contrast to morphologically and ecologically distinct species. previous studies that placed W. cocos in the core Despite this recent work relationships remain unre- polyporoid clade. ITS analyses resolved eight clades solved among North American Laetiporus species and within Laetiporus s.s., three of which might represent among other brown rot polyporoid species lacking undescribed species. A combined analysis using the clamps. This study had two goals: (i) to determine three DNA regions resolved five major clades within relationships among North American species of Laetiporus s.s.: a clade containing conifer-inhabiting Laetiporus and (ii) to determine whether any North species (‘‘Conifericola clade’’), a clade containing L. America polyporoid species that cause brown rots and cincinnatus (‘‘Cincinnatus clade’’), a clade contain- lack clamps are closely related to Laetiporus.To ing L. sulphureus s.s. isolates with yellow pores accomplish these goals species of Laetiporus, Lepto- (‘‘Sulphureus clade I’’), a clade containing L. porus, Phaeolus, Pycnoporellus and Wolfiporia were sulphureus s.s. isolates with white pores (‘‘Sulphureus sequenced in three regions of rDNA: the intergenic clade II’’) and a clade containing L. gilbertsonii and transcribed spacer (ITS), the nuclear large subunit unidentified isolates from the Caribbean (‘‘Gilbertso- (nLSU) and the mitochondrial small subunit nii clade’’). Although there is strong support for (mtSSU). groups within the core Laetiporus clade, relationships Of the genera included in this study the most among these groups remain poorly resolved. widely known is Laetiporus. As it is currently defined Laetiporus includes annual polypore species that Accepted for publication 26 February 2008. produce a brown rot, have dimitic binding hyphae 1 Corresponding author. E-mail: [email protected] and lack cystidia and clamp connections (Gilbertson 417 418 MYCOLOGIA and Ryvarden 1986, Ryvarden 1991). With the gilbertsonii occurs in the southern and western regions exception of L. persicinus,allNorthAmerican of North America and occurs on a wide range of Laetiporus species produce brightly colored, conspic- hardwoods including Eucalyptus. The upper pileus uous fruiting bodies that have been regarded tradi- surface of L. gilbertsonii is generally more salmon to tionally as part of the L. sulphureus s.l. species pink than other Laetiporus species while the pore complex. Species in the L. sulphureus s.l. complex layer is either yellow or white, which differentiates the are popular edibles that frequently are collected two color forms, L. gilbertsonii with a yellow pore layer under the common name ‘‘Sulfur Shelf’’ or ‘‘Chicken and L. gilbertsonii var. pallidus with a white pore layer. of the Woods’’ (Arora 1986). Laetiporus sulphureus s.l. Laetiporus persicinus is the one North American also has been investigated for novel antimicrobial and Laetiporus species not considered part of the L. medicinal compounds (Turkoglu et al 2007) and its sulphureus s.l. complex. This is due to striking bright pigments have been examined for potential as macroscopic differences, including a brown to pink- food colorants (Davoli et al 2005). Various authors ish-brown pileus surface, a pinkish-cream pore layer from the late 19th and early 20th centuries described and flesh and tubes that bruise blackish-brown. additional varieties and species within the L. sulphur- Laetiporus persicinus originally was described by eus s.l. complex to account for the wide range of Berkeley and Curtis in 1872 as Polyporus persicinus morphological and ecological variation exhibited by but was transferred to Laetiporus in 1981 by R. this species, although few of these names were used Gilbertson (Gilbertson 1981). Laetiporus persicinus is widely or consistently. Burdsall and Banik (2001) found in the southeastern United States occurring recognize five species and an additional variety within primarily on Quercus although it is found occasionally the L. sulphureus s.l. complex: L. cincinnatus (Mor- on conifers. Burdsall and Banik (2001) hypothesized gan) Burds., Banik & T.J. Volk, L. conifericola Burds. that L. persicinus might not be closely related to & Banik, L. gilbertsonii Burds., L. gilbertsonii var. species in the L. sulphureus s.l. complex based on the pallidus Burds., L. huroniensis Burds. & Banik and L. dark pigmentations in the fruiting bodies, the sulphureus s.s. appearance of the binding hyphae and preliminary With the exception of Laetiporus cincinnatus, all RFLP data. species in the L. sulphureus s.l. complex typically Work by Hibbett and Donoghue (1995) with produce sessile to laterally substipitate pilei with mtSSU rDNA sequences indicated that genus Phaeo- bright orange upper surfaces and yellow or white lus is closely related to Laetiporus sulphureus s.l. This pore layers (Burdsall and Banik 2001). Laetiporus result has been observed in many analyses (Hibbett cincinnatus produces centrally stipitate, rosette- and Donoghue 2001, Hibbett and Binder 2002, shaped fruiting bodies with a white pore layer; these Binder et al 2005), which confirmed that Phaeolus is fruiting bodies arise near the base of large diameter not aligned with the Hymenochaetales despite super- hardwood trees, usually Quercus species, in the ficial similarities (Wagner and Fischer 2001). The eastern and midwestern United States. In North single North American species of Phaeolus treated by America Laetiporus sulphureus s.s. (as defined by Gilbertson and Ryvarden (1987), P. schweinitzii (Fr.) Burdsall and Banik 2001 and the present study) is Pat., is an important root rot pathogen in conifer found in the eastern and midwestern United States ecosystems. Like L. cincinnatus and L. persicinus, P. and often occurs on Quercus species although schweinitzii has a centrally stipitate fruiting body specimens occasionally are found on other hard- found at the base of trees. Unlike Laetiporus species, woods. Preliminary evidence based on a limited it possesses a monomitic hyphal system and produces number of ITS sequences suggests that North hymenial cystidia. Young Phaeolus fruiting bodies are American and European populations of L. sulphureus yellow to orange but become predominantly brown s.s. are conspecific (unpubl data), however further with age (Gilbertson and Ryvarden 1987). comparative work is needed. If species barriers exist Genus Pycnoporellus also contains species with between North American and European populations monomitic, yellow to orange fruiting bodies, leading of L. sulphureus s.s., nomenclatural revision of the Gilbertson and Ryvarden (1987) to suggest a close North American species would be required given that relationship between
Recommended publications
  • Diversity of Polyporales in the Malay Peninsular and the Application of Ganoderma Australe (Fr.) Pat
    DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: MOHAMAD HASNUL BIN BOLHASSAN (I.C No: 830416-13-5439) Registration/Matric No: SHC080030 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Disertation/Thesis (“this Work”): DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS. Field of Study: MUSHROOM DIVERSITY AND BIOTECHNOLOGY I do solemnly and sincerely declare that: 1) I am the sole author/writer of this work; 2) This Work is original; 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledge in this Work; 4) I do not have any actual
    [Show full text]
  • Molecular Phylogeny of Laetiporus and Other Brown Rot Polypore Genera in North America
    Mycologia, 00(3), 2008, pp. 417-430. 2008 by The Mycological Society of America. Lawrence, KS 66044-8897 Molecular phylogeny of Laetiporus and other brown rot polypore genera in North America Daniel L. Lindner Key words: evolution, Fungi, Macro hyporia Mark T. Banik Polyporaceae, loria, root rot, sulfur shelf, Woijiporia (LS.l).A. Forest Service, A!ailisoo lie/il 0/f/ce of ihC exienca Noel/tern Research Station, Center for loreci iVJcoiogi Research, One Cifford Pine/wt Drive, Madison, Wisconsin 53726 INTRODUCTION The genera Laetiporus Murrill, Leptoporus Quél., Pliacolus (Pat.) Pat., P1 cn oporellus Murrill and Woiji- Abstract: Phylogenetic relationships were investigat- poe/a Rvvarden & Gilb. contain species that possess ed among North American species of Laeii/ont.s, simple septate hvphae, cause brown rots and produce Lepto1borus, Phaeolus, Pçcnoporellus and Wol/tpona annual, polvporoid I nii ti iig bodies with hyaline using ITS, nuclear large subunit anti iiiitochondrial spores. These shared morphological and physiologi- small subunit rDNA sequences. Members of these cal characters have been considered important in genera have poroid hymenophores, simple septate traditional polypore taxonomy (e.g. Gilbertson and hyphae and cause brown rots in a variety of substrates. Rvvardcn 1986, Gilbertson and Rvvarden 1987, Analyses indicate that Laeti/wrus and Wol/ipona are Rvvar(ien 1991) . However recent molecular work I.aeilporhs not monophvletic. All North American indicates that I.ac/iporus, Phaeolus anti Pcnopore11its species formed a well supported monophyletic group kill within the "Ajitrodia dade" of true pOlvpores with (the "core Laeti/orus dade" or Laetiporu.s s.s.) identified by Hibhett anti Donoghue (2001) while the exception of L.
    [Show full text]
  • Mycomedicine: a Unique Class of Natural Products with Potent Anti-Tumour Bioactivities
    molecules Review Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities Rongchen Dai 1,†, Mengfan Liu 1,†, Wan Najbah Nik Nabil 1,2 , Zhichao Xi 1,* and Hongxi Xu 3,* 1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; [email protected] (R.D.); [email protected] (M.L.); [email protected] (W.N.N.N.) 2 Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China * Correspondence: [email protected] (Z.X.); [email protected] (H.X) † These authors contributed equally to this work. Abstract: Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccha- rides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medic- inal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mush- rooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti- cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mecha- Citation: Dai, R.; Liu, M.; Nik Nabil, W.N.; Xi, Z.; Xu, H.
    [Show full text]
  • Basidiomycota) in Finland
    Mycosphere 7 (3): 333–357(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/3/7 Copyright © Guizhou Academy of Agricultural Sciences Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland Kunttu P1, Kulju M2, Kekki T3, Pennanen J4, Savola K5, Helo T6 and Kotiranta H7 1University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland 2Biodiversity Unit P.O. Box 3000, FI-90014 University of Oulu, Finland 3Jyväskylä University Museum, Natural History Section, P.O. BOX 35, FI-40014 University of Jyväskylä, Finland 4Pentbyntie 1 A 2, FI-10300 Karjaa, Finland 5The Finnish Association for Nature Conservation, Itälahdenkatu 22 b A, FI-00210 Helsinki, Finland 6Erätie 13 C 19, FI-87200 Kajaani, Finland 7Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland Kunttu P, Kulju M, Kekki T, Pennanen J, Savola K, Helo T, Kotiranta H 2016 – Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland. Mycosphere 7(3), 333–357, Doi 10.5943/mycosphere/7/3/7 Abstract This article contributes the knowledge of Finnish aphyllophoroid funga with nationally or regionally new species, and records of rare species. Ceriporia bresadolae, Clavaria tenuipes and Renatobasidium notabile are presented as new aphyllophoroid species to Finland. Ceriporia bresadolae and R. notabile are globally rare species. The records of Ceriporia aurantiocarnescens, Crustomyces subabruptus, Sistotrema autumnale, Trechispora elongata, and Trechispora silvae- ryae are the second in Finland. New records (or localities) are provided for 33 species with no more than 10 records in Finland. In addition, 76 records of aphyllophoroid species are reported as new to some subzones of the boreal vegetation zone in Finland.
    [Show full text]
  • Inonotus Obliquus) Mushroom: a Review
    Journal of International Society for Food Bioactives Nutraceuticals and Functional Foods Review J. Food Bioact. 2020;12:9–75 Bioactive compounds and bioactive properties of chaga (Inonotus obliquus) mushroom: a review Han Peng and Fereidoon Shahidi* Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X9 *Corresponding author: Fereidoon Shahidi Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X9. Tel: (709)864-8552; E-mail: [email protected] DOI: 10.31665/JFB.2020.12245 Received: December 04, 2020; Revised received & accepted: December 24, 2020 Citation: Peng, H., and Shahidi, F. (2020). Bioactive compounds and bioactive properties of chaga (Inonotus obliquus) mushroom: a review. J. Food Bioact. 12: 9–75. Abstract Chaga (Inonotus obliquus) is an edible herbal mushroom extensively distributed in the temperate to frigid regions of the Northern hemisphere, especially the Baltic and Siberian areas. Chaga parasites itself on the trunk of various angiosperms, especially birch tree, for decades and grows to be a shapeless black mass. The medicinal/nutraceuti- cal use of chaga mushroom has been recorded in different ancient cultures of Ainu, Khanty, First Nations, and other Indigenous populations. To date, due to its prevalent use as folk medicine/functional food, a plethora of studies on bioactive compounds and corresponding compositional analysis has been conducted in the past 20 years. In this con- tribution, various nutraceutical and pharmaceutical potential, including antioxidant, anti-inflammatory, anti-tumor, immunomodulatory, antimutagenic activity, anti-virus, analgesic, antibacterial, antifungal, anti-hyperglycemic, and anti-hyperuricemia activities/effects, as well as main bioactive compounds including phenolics, terpenoids, polysac- charides, fatty acids, and alkaloids of chaga mushroom have been thoroughly reviewed, and tabulated using a total 171 original articles.
    [Show full text]
  • A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
    Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l.
    [Show full text]
  • Biocatalytic Potential of Native Basidiomycetes from Colombia for Flavour/Aroma Production
    molecules Article Biocatalytic Potential of Native Basidiomycetes from Colombia for Flavour/Aroma Production David A. Jaramillo 1 , María J. Méndez 1 , Gabriela Vargas 1 , Elena E. Stashenko 2 , Aída-M. Vasco-Palacios 3 , Andrés Ceballos 1 and Nelson H. Caicedo 1,* 1 Department of Biochemical Engineering, Universidad Icesi, Calle 18 No. 122–135 Pance, Cali 760031, Colombia; [email protected] (D.A.J.); [email protected] (M.J.M.); [email protected] (G.V.); [email protected] (A.C.) 2 Universidad Industrial de Santander. Chromatography and Mass Spectrometry Center, Calle 9 Carrera 27, Bucaramanga 680002, Colombia; [email protected] 3 Grupo de Microbiología Ambiental—BioMicro, Escuela de Microbiología, Universidad de Antioquia, UdeA, Calle 70 No. 52–21, Medellín 050010, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +573187548041 Academic Editor: Francisco Leon Received: 31 July 2020; Accepted: 15 September 2020; Published: 22 September 2020 Abstract: Aromas and flavours can be produced from fungi by either de novo synthesis or biotransformation processes. Herein, the biocatalytic potential of seven basidiomycete species from Colombia fungal strains isolated as endophytes or basidioma was evaluated. Ganoderma webenarium, Ganoderma chocoense, and Ganoderma stipitatum were the most potent strains capable of decolourizing β,β-carotene as evidence of their potential as biocatalysts for de novo aroma synthesis. Since a species’ biocatalytic potential cannot solely be determined via qualitative screening using β,β-carotene biotransformation processes, we focused on using α-pinene biotransformation with mycelium as a measure of catalytic potential. Here, two strains of Trametes elegans—namely, the endophytic (ET-06) and basidioma (EBB-046) strains—were screened.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Laetiporus Sulphureus
    vv ISSN: 2455-5282 DOI: https://dx.doi.org/10.17352/gjmccr CLINICAL GROUP Jiri Patocka1,2* Case Study 1University of South Bohemia, Faculty of Health and Social Studies, Institute of Radiology, České Budějovice, Czech Republic Will the sulphur polypore (laetiporus 2Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic sulphureus) become a new functional Received: 23 May, 2019 Accepted: 12 June, 2019 food? Published: 13 June, 2019 *Corresponding author: Jiri Patocka, University of South Bohemia, Faculty of Health and Social Stud- ies, Institute of Radiology, České Budějovice, Czech Summary Republic, E-mail: Mushrooms are a rich source of chemical compounds. Such a mushroom is also polypore Laetiporus ORCID: https://orcid.org/0000-0002-1261-9703 sulphureus, in which a large number of bioactive substances with cytotoxic, antimicrobial, anticancer, https://www.peertechz.com anti-infl ammatory, hypoglycemic, and antioxidant activity have been found. This short review summarizes the results of the most important chemical and biological studies of the fruiting bodies and the mycelial cultures of L. sulphureus. Since the ingredients of this edible mushroom have benefi cial effects on human health, it could become a functional food. Introduction Food and/or medicine? The sulphur shelf (Laetiporus sulphureus Bull.:Fr.) Murrill.), Over the generations, this mushroom has become an integral also known as crab-of-the-woods or chicken-of-the-woods, part of some national cuisines particularly for its taste. Besides, is a saprophyte mushroom from the family Polyporaceae that it is used in folk medicine for treatment of coughs, pyretic grow on trees in Europe, Asia and North America.
    [Show full text]
  • Aurantiporus Alborubescens (Basidiomycota, Polyporales) – First Record in the Carpathians and Notes on Its Systematic Position
    CZECH MYCOLOGY 66(1): 71–84, JUNE 4, 2014 (ONLINE VERSION, ISSN 1805-1421) Aurantiporus alborubescens (Basidiomycota, Polyporales) – first record in the Carpathians and notes on its systematic position 1 2 3 DANIEL DVOŘÁK ,JAN BĚŤÁK ,MICHAL TOMŠOVSKÝ 1Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic; [email protected] 2Mášova 21, CZ-602 00 Brno, Czech Republic 3Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic Dvořák D., Běťák J., Tomšovský M. (2014): Aurantiporus alborubescens (Basidio- mycota, Polyporales) – first record in the Carpathians and notes on its systematic position. – Czech Mycol. 66(1): 71–84. The authors present the first collection of the rare old-growth forest polypore Aurantiporus alborubescens in the Carpathians, supported by a description of macro- and microscopic features. Its European distribution and ecological demands are discussed. LSU rDNA sequences of the collected material were also analysed and compared with those of A. fissilis and A. croceus as well as some other polyporoid and corticioid species, in order to resolve the phylogenetic placement of the studied species. Based on the results of the molecular analysis, the homogeneity of the genus Aurantiporus Murrill in the sense of Jahn is questioned. Key words: Aurantiporus, phylogeny, old-growth forests, beech forests, indicator species. Dvořák D., Běťák J., Tomšovský M. (2014): Aurantiporus alborubescens (Basidio- mycota, Polyporales) – první nález v Karpatech a poznámky k jeho systematické- mu zařazení. – Czech Mycol. 66(1): 71–84. Autoři prezentují první nález vzácného choroše přirozených lesů, druhu Aurantiporus alboru- bescens, v Karpatech, doprovázený makroskopickým i mikroskopickým popisem.
    [Show full text]
  • Intragenomic Variation in the ITS Rdna Region Obscures Phylogenetic Relationships and Inflates Estimates of Operational Taxonomic Units in Genus Laetiporus
    Mycologia, 103(4), 2011, pp. 731–740. DOI: 10.3852/10-331 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus Daniel L. Lindner1 spacer region, intragenomic variation, molecular Mark T. Banik drive, sulfur shelf US Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726 INTRODUCTION Genus Laetiporus Murrill (Basidiomycota, Polypo- rales) contains important polypore species with Abstract: Regions of rDNA are commonly used to worldwide distribution and the ability to produce infer phylogenetic relationships among fungal species cubical brown rot in living and dead wood of conifers and as DNA barcodes for identification. These and angiosperms. Ribosomal DNA sequences, includ- regions occur in large tandem arrays, and concerted ing sequences from the internal transcribed spacer evolution is believed to reduce intragenomic variation (ITS) and large subunit (LSU) regions, have been among copies within these arrays, although some used to define species and infer phylogenetic variation still might exist. Phylogenetic studies typi- relationships in Laetiporus and to confirm the cally use consensus sequencing, which effectively existence of cryptic species (Lindner and Banik conceals most intragenomic variation, but cloned 2008, Ota and Hattori 2008, Tomsovsky and Jankovsky sequences containing intragenomic variation are 2008, Ota et al. 2009, Vasaitis et al. 2009) described becoming prevalent in DNA databases. To under- with mating compatibility, ITS-RFLP, morphology stand effects of using cloned rDNA sequences in and host preference data (Banik et al. 1998, Banik phylogenetic analyses we amplified and cloned the and Burdsall 1999, Banik and Burdsall 2000, Burdsall ITS region from pure cultures of six Laetiporus and Banik 2001).
    [Show full text]
  • Hen-Of-The-Woods Grifola Frondosa
    hen-of-the-woods Grifola frondosa Kingdom: Fungi Division/Phylum: Basidiomycota Class: Agaricomycetes Order: Polyporales Family: Meripilaceae ILLINOIS STATUS common, native FEATURES The body of a fungus (mycelium) is made up of strands called mycelia. The mycelium grows within the soil, a dead tree or other object and is rarely seen. The fruiting body that produces spores is generally present for only a short period of time but is the most familiar part of the fungus to people. The hen-of-the-woods grows in clumps of fan-shaped caps that overlap and are attached to the stalk. The gray-brown cap’s upper surface is smooth or hairy. The cap is attached at one side to a very large stalk. The pores under the cap are white or yellow. The cap may be as much as three and one-fourth inches wide. BEHAVIORS Hen-of-the-woods may be found statewide in Illinois. Its clusters develop in a single mass or in groups around stumps and trees. Unlike plants, fungi do not have roots, stems, leaves, flowers or seeds. Hen-of-the-woods must absorb nutrients and water from the objects it grows in. Spores are produced in the fall. The spores provide a means of reproduction, dispersal and survival in poor conditions. Spore production occurs when conditions are favorable, generally with warm temperatures and ample moisture. HABITATS Aquatic Habitats bottomland forests; peatlands Woodland Habitats bottomland forests; coniferous forests; southern Illinois lowlands; upland deciduous forests Prairie and Edge Habitats edge © Illinois Department of Natural Resources. 2016. Biodiversity of Illinois.
    [Show full text]