Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Perspectives PERspECTIVES steady-state spatial patterns could also arise TIMELINE from such processes in living systems21. The full formalization of the nature of Self-organization in cell biology: self-organization processes came from the work of Prigogine on instabilities and the a brief history emergence of organization in ‘dissipative systems’ in the 1960s22–24, and from Haken who worked on similar issues under the Eric Karsenti name of synergetics11 (TIMELINE). Abstract | Over the past two decades, molecular and cell biologists have made It was clear from the outset that the emergence of dynamical organization important progress in characterizing the components and compartments of the observed in physical and chemical systems cell. New visualization methods have also revealed cellular dynamics. This has should be of importance to biology, and raised complex issues about the organization principles that underlie the scientists who are interested in the periodic emergence of coherent dynamical cell shapes and functions. Self-organization manifestations of life and developmental concepts that were first developed in chemistry and physics and then applied to biology have been actively working in this field19,25–29. From a more general point various morphogenetic problems in biology over the past century are now of view, Kauffman built on the ideas of beginning to be applied to the organization of the living cell. Prigogine and Haken in an attempt to explain the origin of order in biology30–32. One of the most fundamental problems in this complex state of living matter as a self- Self-organization was also invoked to biology concerns the origin of forms and organized end8–10. This led him to question explain the formation of regular patterns in their associated functions. This has been a the validity of using the causality principle the fur of animals and the collective behav- long-lasting question in developmental of classical physics to explain life, and to iour of organisms in ant colonies, termite biology, but similar questions must also suggest that a new kind of science would be nest building, schools of fish and flocks of be addressed at the cellular level. Since required to study how purpose and means birds33,34. The importance of self-organiza- the discovery of the structure of DNA, the are intricately connected8. tion processes in molecular cell biology genome has often been thought of as the The new science he was talking about began to be recognized in the 1980s and overriding architect: a given combination did emerge much later, from observations 1990s1,35–40, but only really started to gain of genes that determines the phenotype and studies made by chemists and physicists momentum recently6,41–43 (TIMELINE). through a linear chain of causal events. who discovered new, more complex forms In the following article, I do not deal The problem is that embryogenesis and of causality than what Kant had foreseen11,12. with developmental biology issues but dynamic cell forms and functions emerge Ironically, although Kant attempted to specifically focus on how self-organization from multiple molecular interactions and characterize life as a self-organization principles and mechanisms (BOX 1) can help interconnected regulatory feedback loops1–4. process in opposition to non-living mat- to understand subcellular and whole-cell Moreover, many parameters, such as physi- ter, the first well-defined concepts and morphogenesis. I first summarize the cal constraints and collective behaviours, are observations of self-organized processes essence of the theory of self-organization in not under the direct control of the genome. came from theoretical considerations by physico-chemical systems in simple terms. Therefore, we cannot hope to explain cell Lotka13,14, from chemistry by Bray15 and I then show how this concretely applies to morphogenesis, for example, by invoking from the Belousov–Zhabotinsky reaction16–19 some examples of cell organization and simple linear chains of causal events that link (TIMELINE). Chemical oscillations emerged function. genes to phenotypes5–7. from reaction–diffusion processes that It seems that the philosopher Kant was were formalized in mathematical terms Self-organization concepts the first to define life as a “self-organized, by Kolmogorov et al.20 in the 1930s and by The initial definition of self-organization self-reproducing” process (TIMELINE). Turing in the 1950s, who predicted that by Kant as a characteristic of living systems Through pure reasoning, he defined life as implied the existence of a loop between the emergence of functions by self-organiza- organization and function. A simpler tion. He said that in an organism, every It was clear from the outset definition used by modern scientists is that part owes its existence and origin to that that the emergence of dynamical dynamic organization emerges from the of the other parts, with the functions organization observed in physical collective behaviour of ‘agents’, the individual that are attributed to a complete living organ properties of which cannot account for or organism emerging from the properties and chemical systems should be the properties of the final dynamic pattern. of the parts and of the whole. He defined of importance to biology... This definition is more general and has the natURE REVIEWS | MOLECULAR CELL BIOLOGY VolUME 9 | MARch 2008 | 255 © 2008 Nature Publishing Group PERS P ECTIVES Timeline | Key events in the application of self-organization concepts in cell biology (1972–1977) Biological pattern formation30,31. (1999–2005) Kant and the self- First oscillating Exploratory Reaction–diffusion organized nature chemical reaction Turing (1972–1977) Oscillations behaviours in cell Self-organized and intracellular (2005–2007) The self- of life8–10. in solution15. patterns21. in glycolysis25–27. morphogenesis36. microtubule patterns37,38. morphogenesis3,4. organized cell41,43,80,88,89. 1790 1900 1921 1951 1952 1967 1972 1977 1986 1990 1991 1997 1999 2003 2005 Discovery of the Belousov–Zhabotinsky Dissipative systems11,22. (1977–1984) Experimental Turing (1997–2001) Emergent Self-organized cell polarity91–94. Bénard rolls44. oscillatory reaction16–19. Multicellular29,33 patterns46,47. cytoskeleton patterns and mitotic spindle from collective self-organization39. Self-organized animal behaviours57,58. populations33,34. advantage of being applicable to systems that Origins in thermodynamics. At first sight, energy that flows through it can be used to do not necessarily acquire a function, even the spontaneous emergence of order in the decrease its entropy (that is, generate order). though they become dynamically organ- universe contradicts the second law of thermo- Molecules can suddenly organize themselves ized. The understanding of the emergence dynamics: a thermodynamically closed sys- in dynamic patterns. Bénard rolls44,45 (long- of function can be studied separately. The tem settles in the most disordered state (that itudinal cylinders of liquid molecules that other advantage of this definition is that it is, the state with the highest entropy, when form precise and stable dynamic patterns) establishes how self-organized dynamical molecules occupy all of the space randomly; represent such an example and were called systems should be studied: the goal of the FIG. 1a). Ordered states can and do emerge at ‘dissipative structures’ by Prigogine22 (FIG. 1b). science of self-organization is to identify thermodynamic equilibrium (for example, the principles and mechanisms by which an crystals, lipid bilayers, molecular complex Collective behaviour and the Bénard rolls. ensemble of agents in interaction evolves formation), but they are static. Bénard rolls form when a liquid is heated towards a particular dynamical temporal or In a thermodynamically open system from below, which generates a temperature spatial pattern. that receives energy from the outside, the gradient. Molecules at the bottom of the container are more agitated than at the top, creating a lighter layer of liquid than that Box 1 | Self-organization concepts and mechanisms at the top. Roll formation results from local Self-organization occurs when elements interact dynamically with each other to generate a system instabilities that lead the system to break its that acquires emergent properties that cannot be directly predicted from the individual properties symmetry when molecules start to behave of the elements. This only happens when the system dissipates energy. collectively. This happens at different critical temperatures for different fluids, but always Principles Mechanisms Examples in the cell occurs when all of the parameters balance Thermodynamics: non- Thermal, chemical or other ATP consumption coupled to each other so that they satisfy a universal equilibrium thermodynamics. energy dissipation that is dynamic pattern formation. number, called the Rayleigh number, which associated with dynamic 33 pattern formation. equals 1708 under specific conditions . The system can generate rolls that, at Symmetry breaking: occurs Gravity, temperature or Intrinsic asymmetry of a given position in the container, move when a system switches chemical gradients, local agents, nonlinear reactions, from one symmetry level to fluctuations. stereospecific localization clockwise or counter-clockwise with alternate another. of enzymes, pre-existing orientation. When the temperature is raised structures. to the critical value, the system bifurcates Emergence: a new property Collective effects
Recommended publications
  • On Genes and Form Enrico Coen*, Richard Kennaway and Christopher Whitewoods
    © 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 4203-4213 doi:10.1242/dev.151910 REVIEW On genes and form Enrico Coen*, Richard Kennaway and Christopher Whitewoods ABSTRACT aside ‘not because I doubt for a moment the facts nor dispute the The mechanisms by which organisms acquire their sizes and shapes hypotheses nor decry the importance of one or other; but because we through growth was a major focus of D’Arcy Thompson’s book are so much in the dark as to the mysterious field of force in which the On Growth and Form. By applying mathematical and physical chromosomes lie, far from the visible horizon of physical science, principles to a range of biological forms, Thompson achieved fresh that the matter lies (for the present) beyond the range of problems ’ insights, such as the notion that diverse biological shapes could be which this book professes to discuss (p. 341, Thompson, 1942). related through simple deformations of a coordinate system. However, Much of the darkness and mystery Thompson refers to was lifted in Thompson considered genetics to lie outside the scope of his work, the second half of the 20th century, as the nature of genes and their even though genetics was a growing discipline at the time the mechanisms of action became clear. Nevertheless, the link between book was published. Here, we review how recent advances in cell, gene activity and the generation of form remained obscure, largely developmental, evolutionary and computational biology allow because of difficulties in determining growth patterns and relating Thompson’s ideas to be integrated with genes and the processes them to physico-chemical mechanisms.
    [Show full text]
  • John Wells: Centenary Display Jonty Lees: Artist in Residence Autumn 2005 Winter 2007 6 October 2007 – 13 January 2008
    Kenneth Martin & Mary Martin: Constructed Works John Wells: Centenary Display Jonty Lees: Artist in Residence Autumn 2005 Winter 2007 6 October 2007 – 13 January 2008 Notes for Teachers - 1 - Contents Introduction 3 Kenneth Martin & Marty Martin: Constructed Works 4 John Wells: Centenary Display 11 Jonty Lees: Artist in Residence 14 Bernard Leach and his Circle 17 Ways of Looking – Questions to Ask of Any Artwork 19 Suggested Activities 20 Tate Resources & Contacts 22 Further Reading 22 Key Art Terms 24 - 2 - Introduction The Winter 2007 displays present: Kenneth Martin and Mary Martin: Constructed Works (Gallery 1, 3, 4, and the Apse) This exhibition shows the work of two of Britain’s key post-war abstract artists, Kenneth Martin and Mary Martin. The exhibition includes nearly 50 works and focuses on Kenneth Martin’s mobiles and his later Chance and Order series of abstract paintings, alongside Mary Martin’s relief sculptures. Modernism and St Ives from 1940 (Lower Gallery 2) This display of artists associated with St Ives from the Tate Collection is designed to complement the Kenneth Martin and Mary Martin exhibition. It includes work by Mary Martin, Victor Pasmore, Anthony Hill and Adrian Heath alongside St Ives artists such as Peter Lanyon, Terry Frost and Ben Nicholson. John Wells: Centenary Display (The Studio) A small display of paintings and relief constructions by John Wells, designed to celebrate the centenary of his birth. Bernard Leach and his Circle (Upper Gallery 2) Ceramics by Bernard Leach and key studio potters who worked alongside him. These works form part of the Wingfield-Digby Collection, recently gifted to Tate St Ives.
    [Show full text]
  • IV. on Growth and Form and D'arcy Wenworth Thompson
    Modified 4th chapter from the novel „Problem promatrača“ („Problem of the observer“), by Antonio Šiber, Jesenski i Turk (2008). Uploaded on the author website, http://asiber.ifs.hr IV. On growth and form and D'Arcy Wenworth Thompson St. Andrews on the North Sea is a cursed town for me. In a winter afternoon in year 1941, a bearded, grey-haired eighty year old man with swollen eyes and big head covered by even bigger hat was descending down the hill side to the harbor. He had a huge butcher’s knife in his hand. A few workers that gathered around a carcass of a huge whale which the North Sea washed on the docks visibly retreated away from a disturbing scene of a tall and hairy figure with an impressive knife. The beardo approached the whale carcass and in less than a minute swiftly separated a thick layer of underskin fat, and then also several large pieces of meat. He carefully stored them in a linen bag that he threw over the shoulder and slowly started his return, uphill. The astonished workers watched the whole procedure almost breathlessly, and then it finally occurred to one of them who was looking in the back of a slowly distancing old man that it was not such a bad idea. It is a war time and shortage of meat. And if professor of natural philosophy Sir D’Arcy Thompson concluded that the fish is edible… Who would know better than him? After all, he thinks only of animals and plants. Of course, Thomson knew perfectly well that the whale is not fish, but to workers this was of not much importance.
    [Show full text]
  • Copyrighted Material
    1 Symmetry of Shapes in Biology: from D’Arcy Thompson to Morphometrics 1.1. Introduction Any attentive observer of the morphological diversity of the living world quickly becomes convinced of the omnipresence of its multiple symmetries. From unicellular to multicellular organisms, most organic forms present an anatomical or morphological organization that often reflects, with remarkable precision, the expression of geometric principles of symmetry. The bilateral symmetry of lepidopteran wings, the rotational symmetry of starfish and flower corollas, the spiral symmetry of nautilus shells and goat horns, and the translational symmetry of myriapod segments are all eloquent examples (Figure 1.1). Although the harmony that emanates from the symmetry of organic forms has inspired many artists, it has also fascinated generations of biologists wondering about the regulatory principles governing the development of these forms. This is the case for D’Arcy Thompson (1860–1948), for whom the organic expression of symmetries supported his vision of the role of physical forces and mathematical principles in the processes of morphogenesisCOPYRIGHTED and growth. D’Arcy Thompson’s MATERIAL work also foreshadowed the emergence of a science of forms (Gould 1971), one facet of which is a new branch of biometrics, morphometrics, which focuses on the quantitative description of shapes and the statistical analysis of their variations. Over the past two decades, morphometrics has developed a methodological Chapter written by Sylvain GERBER and Yoland SAVRIAMA. 2 Systematics and the Exploration of Life framework for the analysis of symmetry. The study of symmetry is today at the heart of several research programs as an object of study in its own right, or as a property allowing developmental or evolutionary inferences.
    [Show full text]
  • Theory of the Growth and Evolution of Feather Shape
    30JOURNAL R.O. PRUMOF EXPERIMENTAL AND S. WILLIAMSON ZOOLOGY (MOL DEV EVOL) 291:30–57 (2001) Theory of the Growth and Evolution of Feather Shape RICHARD O. PRUM* AND SCOTT WILLIAMSON Department of Ecology and Evolutionary Biology, and Natural History Museum, University of Kansas, Lawrence, Kansas 66045 ABSTRACT We present the first explicit theory of the growth of feather shape, defined as the outline of a pennaceous feather vane. Based on a reanalysis of data from the literature, we pro- pose that the absolute growth rate of the barbs and rachis ridges, not the vertical growth rate, is uniform throughout the follicle. The growth of feathers is simulated with a mathematical model based on six growth parameters: (1) absolute barb and rachis ridge growth rate, (2) angle of heli- cal growth of barb ridges, (3) initial barb ridge number, (4) new barb ridge addition rate, (5) barb ridge diameter, and (6) the angle of barb ramus expansion following emergence from the sheath. The model simulates growth by cell division in the follicle collar and, except for the sixth param- eter, does not account for growth by differentiation in cell size and shape during later keratiniza- tion. The model can simulate a diversity of feather shapes that correspond closely in shape to real feathers, including various contour feathers, asymmetrical feathers, and even emarginate prima- ries. Simulations of feather growth under different parameter values demonstrate that each pa- rameter can have substantial, independent effects on feather shape. Many parameters also have complex and redundant effects on feather shape through their influence on the diameter of the follicle, the barb ridge fusion rate, and the internodal distance.
    [Show full text]
  • Pattern Formation in Nature: Physical Constraints and Self-Organising Characteristics
    Pattern formation in nature: Physical constraints and self-organising characteristics Philip Ball ________________________________________________________________ Abstract The formation of patterns is apparent in natural systems ranging from clouds to animal markings, and from sand dunes to the intricate shells of microscopic marine organisms. Despite the astonishing range and variety of such structures, many seem to have analogous features: the zebra’s stripes put us in mind of the ripples of blown sand, for example. In this article I review some of the common patterns found in nature and explain how they are typically formed through simple, local interactions between many components of a system – a form of physical computation that gives rise to self- organisation and emergent structures and behaviours. ________________________________________________________________ Introduction When the naturalist Joseph Banks first encountered Fingal’s Cave on the Scottish island of Staffa, he was astonished by the quasi-geometric, prismatic pillars of rock that flank the entrance. As Banks put it, Compared to this what are the cathedrals or palaces built by men! Mere models or playthings, as diminutive as his works will always be when compared with those of nature. What now is the boast of the architect! Regularity, the only part in which he fancied himself to exceed his mistress, Nature, is here found in her possession, and here it has been for ages undescribed. This structure has a counterpart on the coast of Ireland: the Giant’s Causeway in County Antrim, where again one can see the extraordinarily regular and geometric honeycomb structure of the fractured igneous rock (Figure 1). When we make an architectural pattern like this, it is through careful planning and construction, with each individual element cut to shape and laid in place.
    [Show full text]
  • Word Doc.Corrected Nature As Strategy for Pattern Formation In
    Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture Nature as a Strategy for Pattern Formation in Art Irene Rousseau MFA, Ph.D.,Artist 41Sunset Drive Summit, New Jersey, 07901, USA [email protected], www.irenerousseau.com Abstract We live in a world of structures and patterns that are determined by the interaction of natural forces and environmental factors. Understanding forms in nature provides answers to the molecular structure and how the use of minimal energy creates these patterns. Research by esteemed scientists such as D’Arcy Wentworth Thompson, Charles Darwin and Leonard da Vinci will be noted as evidence for the conclusion. Why is this an important topic? This knowledge can be and has been adapted to many of today’s innovations and uses of technology in medicine and architecture. Applications in these fields will be cited. My creative work will show my strategy for structures and patterns. These are a sequence of numbers combined to stretch the space that show transition and change, that relate to forms in nature. Introduction Where do Structure and Patterns come from? Scientific research has provided the answer, that the molecular structure of a form is determined by intrinsic, natural forces, although random changes are governed by extrinsic, environmental factors of how living organisms evolve and adapt over time. D’Arcy Thompson in his monumental book On Growth and Form states: “Shape or form…is the resultant of a number of forces, which represent or symbolize the manifestations of various kinds of energy…Nature creates structures and patterns according to minimal use of energy”.
    [Show full text]
  • On Growth and Form
    On Growth and Form On Growth and Form On Growth and Form This collection of essays by architects and artists revisits D’Arcy Thompson’s influential bookOn Growth and Form Organic Architecture and Beyond (1917) to explore the link between morphology and form- making in historical and contemporary design. This book sheds new light on architects’ ongoing fascination with Edited by Philip Beesley & Sarah Bonnemaison organicism, and the relation between nature and artifice that makes our world. Beesley • Bonnemaison on growth and form Organic architecture and beyond Tuns Press and Riverside Architectural Press 2 on growth and form Tuns Press Faculty of Architecture and Planning Dalhousie University P.O. Box 1000, Halifax, NS Canada B3J 2X4 web: tunspress.dal.ca © 2008 by Tuns Press and Riverside Architectural Press All Rights Reserved. Published March 2008 Printed in Canada Library and Archives Canada Cataloguing in Publication On growth and form : organic architecture and beyond / edited by Sarah Bonnemaison and Philip Beesley. Includes bibliographical references. ISBN 978-0-929112-54-1 1. Organic architecture. 2. Nature (Aesthetics) 3. Thompson, D’Arcy Wentworth, 1860-1948. On growth and form. I. Bonnemaison, Sarah, 1958- II. Beesley, Philip, 1956- NA682.O73O6 2008 720’.47 C2008-900017-X contents 7 Why Revisit D’Arcy Wentworth Thompson’sOn Growth and Form? Sarah Bonnemaison and Philip Beesley history and criticism 16 Geometries of Creation: Architecture and the Revision of Nature Ryszard Sliwka 30 Old and New Organicism in Architecture: The Metamorphoses of an Aesthetic Idea Dörte Kuhlmann 44 Functional versus Purposive in the Organic Forms of Louis Sullivan and Frank Lloyd Wright Kevin Nute 54 The Forces of Matter Hadas A.
    [Show full text]
  • (B59876d) (PDF) on Growth and Form: the Complete Revised Edition
    (PDF) On Growth And Form: The Complete Revised Edition (Dover Books On Biology) D'Arcy Wentworth Thompson, Biology - download pdf On Growth And Form: The Complete Revised Edition (Dover Books On Biology) Download PDF, On Growth And Form: The Complete Revised Edition (Dover Books On Biology) by D'Arcy Wentworth Thompson, Biology Download, Read On Growth And Form: The Complete Revised Edition (Dover Books On Biology) Full Collection D'Arcy Wentworth Thompson, Biology, PDF On Growth And Form: The Complete Revised Edition (Dover Books On Biology) Full Collection, free online On Growth And Form: The Complete Revised Edition (Dover Books On Biology), online pdf On Growth And Form: The Complete Revised Edition (Dover Books On Biology), Download Free On Growth And Form: The Complete Revised Edition (Dover Books On Biology) Book, Download PDF On Growth And Form: The Complete Revised Edition (Dover Books On Biology), pdf free download On Growth And Form: The Complete Revised Edition (Dover Books On Biology), by D'Arcy Wentworth Thompson, Biology On Growth And Form: The Complete Revised Edition (Dover Books On Biology), book pdf On Growth And Form: The Complete Revised Edition (Dover Books On Biology), Download On Growth And Form: The Complete Revised Edition (Dover Books On Biology) E-Books, Download Online On Growth And Form: The Complete Revised Edition (Dover Books On Biology) Book, Read Online On Growth And Form: The Complete Revised Edition (Dover Books On Biology) Book, Read Online On Growth And Form: The Complete Revised Edition (Dover Books
    [Show full text]
  • On Growth and Form
    COMMENT BOOKS & ARTS topics. To name a few: the mathematical laws that relate growth, flight and locomotion to mass and size (a topic currently experiencing a renaissance); the shapes of cells, bubbles and soap films; geometrical compartmen- talization and honeycombs; corals; banded minerals; the intricate shells of molluscs and of the minuscule protozoan radiolar- ians; antlers and horns; plant shapes; bone microstructure; skeletal mechanics; and the UNLIMITED/SPL TAYLOR/VISUALS GEORGE morphological comparison of species. The book’s central motif is the logarithmic spiral, which appears on the plaque com- memorating Thompson’s former residence in St Andrews. He saw it first in foramini- fera, and again in seashells, horns and claws, insect flight paths and the arrangement of leaves in some plants. This, to Thompson, was evidence of the universality of form and the reduction of diverse phenomena to a few mathematical governing principles. How much influence did On Growth and Form have? Evolutionary and developmen- tal biologists often genuflect to Thompson’s breadth and imagination while remaining sceptical that he told us much of lasting value. Thompson was reacting against the Dar- winism of his age, whereby, in its first flush IN RETROSPECT of enthusiasm, it seemed adequate to account for every feature with a plea to adaptation. Thompson’s insistence that biological form had to make sense in engineering terms was On Growth and Form a necessary reminder. But it did not challenge the idea that natural selection was evolution’s Philip Ball celebrates a classic work on the mathematics scalpel — it merely imposed constraints on the forms that might emerge.
    [Show full text]
  • The Legacy of D'arcy Thompson's
    © 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 4284-4297 doi:10.1242/dev.137505 REVIEW The old and new faces of morphology: the legacy of D’Arcy Thompson’s ‘theory of transformations’ and ‘laws of growth’ Arhat Abzhanov1,2,* ABSTRACT which celebrates its 100th anniversary this year. In this Review, I ’ In 1917, the publication of On Growth and Form by D’Arcy Wentworth discuss some of the book s key ideas in a historical perspective, in Thompson challenged both mathematicians and naturalists to think particular geometric transformations of biological shapes and the ‘ ’ about biological shapes and diversity as more than a confusion of laws of growth underpinning biological diversity, and consider the chaotic forms generated at random, but rather as geometric shapes significance of these concepts to the modern developmental that could be described by principles of physics and mathematics. genetics and evolutionary biology fields. Thompson’s work was based on the ideas of Galileo and Goethe on The first attempts to describe the appearance of animals and morphology and of Russell on functionalism, but he was first to plants, mostly for taxonomic reasons, started thousands of years ago. postulate that physical forces and internal growth parameters regulate Works by Aristotle and colleagues in classical times laid the ‘ ’ biological forms and could be revealed via geometric transformations foundations of the science of morphology (morphé, meaning form , ‘ ’ in morphological space. Such precise mathematical structure and lógos, meaning study ). This field of biology is interested in suggested a unifying generative process, as reflected in the title of overall appearance, both external (size, shape, colour and pattern) the book.
    [Show full text]
  • Stephen Jay Gould Source: New Literary History, Vol
    D'Arcy Thompson and the Science of Form Author(s): Stephen Jay Gould Source: New Literary History, Vol. 2, No. 2, Form and Its Alternatives (Winter, 1971), pp. 229- 258 Published by: The Johns Hopkins University Press Stable URL: http://www.jstor.org/stable/468601 Accessed: 22-04-2015 15:47 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/468601?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to New Literary History. http://www.jstor.org This content downloaded from 134.84.3.112 on Wed, 22 Apr 2015 15:47:09 UTC All use subject to JSTOR Terms and Conditions D'Arcy Thompsonand the Science of Form StephenJay Gould Our own studyof organicform, which we call by Goethe's name of Morphology,is but a portionof that wider Science of Form whichdeals withthe formsassumed by matterunder all aspectsand conditions,and, in a stillwider sense, with forms which are theoreticallyimaginable.
    [Show full text]