Center for Drug Evaluation and Research Application

Total Page:16

File Type:pdf, Size:1020Kb

Center for Drug Evaluation and Research Application CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-512 PHARMACOLOGY REVIEW(S) Tertiary Pharmacology Review By: Paul C. Brown, Ph.D., ODE Associate Director for Pharmacology and Toxicology OND IO NDA: 22-307 Submission date: 4/19/2010 Drug: Pradaxa™ (Dabigatran etexilate mesylate) Sponsor: Boehringer Ingelheim Pharma GmbH & Co. KG Indication: Prevention of stroke and systemic embolism in patients with atrial fibrillation Reviewing Division: Division of Cardiovascular and Renal Products Comments: The pharm/tox reviewer and supervisor found the nonclinical information submitted for dabigatran to be sufficient to support the proposed use. The reviewer proposes pregnancy category C for the labeling. Dabigatran induced some reproductive toxicity in rats manifest as a decreased number of implantations, decreased number of viable fetuses, increase in the resorption rate, increase in post-implantation loss, and an increase in the number of dead offspring when given at doses of 70 mg/kg (about 2.6 to 3 times the MRHD of 300 mg/day on a mg/m2 basis). Dabigatran also induced some fetal structural variations but did not induce fetal malformations in rats or rabbits. Dabigatran was evaluated for carcinogenicity in 2-year rat and mouse studies. The Executive Carcinogenicity Assessment Committee concluded that these studies were adequate and there were no drug-related tumors in either study. Conclusions: I concur with the Division pharm/tox conclusion that the nonclinical data support approval of this NDA. No additional nonclinical studies are recommended at this time. The proposed Established Pharmacologic Class for dabigatran is "direct thrombin inhibitor". This is appropriate because it is consistent with other moieties of this class. I agree with the division recommendations on labeling. --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- PAUL C BROWN 10/14/2010 Reference ID: 2850171 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH PHARMACOLOGY/TOXICOLOGY NDA REVIEW AND EVALUATION Application number: 22-512 Supporting document/s: EDR Applicant’s letter date: 4/19/10 (Initial 9/17/09) CDER stamp date: 4/19/10 (Initial 9/17/09) Product: Pradaxa™ (Dabigatran etexilate mesylate) Indication: Prevention of stroke and systemic embolism in patients with atrial fibrillation Applicant: Boehringer Ingelheim Pharma GmbH & Co. KG Review Division: Division of Cardiovascular and Renal Products Reviewer: Patricia P. Harlow, Ph.D. Supervisor/Team Leader: Albert DeFelice, Ph.D. Division Director: Norman Stockbridge, M.D., Ph.D. Project Manager: Alison Blaus Template Version: December 7, 2009 Disclaimer Except as specifically identified, all data and information discussed below and necessary for approval of NDA 22-512 are owned by Boehringer Ingelheim Pharma GmbH & Co. KG or are data for which Boehringer Ingelheim Pharma GmbH & Co. KG has obtained a written right of reference. Any information or data necessary for approval of NDA 22-512 that Boehringer Ingelheim Pharma GmbH & Co. KG does not own or have a written right to reference constitutes one of the following: (1) published literature, or (2) a prior FDA finding of safety or effectiveness for a listed drug, as described in the drug’s approved labeling. Any data or information described or referenced below from FDA reviews or publicly available summaries of a previously approved application is for descriptive purposes only and is not relied upon for approval of NDA 22-512. 1 NDA 22-512 Patricia Harlow, Ph.D. TABLE OF CONTENTS 1 EXECUTIVE SUMMARY ......................................................................................... 9 1.1 RECOMMENDATIONS ............................................................................................ 9 1.2 BRIEF DISCUSSION OF NONCLINICAL FINDINGS .................................................... 11 2 DRUG INFORMATION .......................................................................................... 18 3 STUDIES SUBMITTED.......................................................................................... 23 4 PHARMACOLOGY................................................................................................ 32 4.1 PRIMARY PHARMACOLOGY ................................................................................. 32 4.2 SECONDARY PHARMACOLOGY ............................................................................ 42 4.3 SAFETY PHARMACOLOGY................................................................................... 43 5 PHARMACOKINETICS/ADME/TOXICOKINETICS .............................................. 51 5.1 PK/ADME........................................................................................................ 51 5.2 TOXICOKINETICS ............................................................................................... 72 6 GENERAL TOXICOLOGY..................................................................................... 74 6.1 SINGLE-DOSE TOXICITY ..................................................................................... 74 6.2 REPEAT-DOSE TOXICITY .................................................................................... 74 6.2.1 REPEAT-DOSE TOXICITY IN RODENTS.............................................................. 76 6.2.2 REPEAT-DOSE TOXICITY IN NONRODENTS ....................................................... 94 7 GENETIC TOXICOLOGY .................................................................................... 122 8 CARCINOGENICITY ........................................................................................... 171 9 REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY .............................. 204 9.1 FERTILITY AND EARLY EMBRYONIC DEVELOPMENT............................................. 204 9.2 EMBRYONIC FETAL DEVELOPMENT ................................................................... 223 9.3 PRENATAL AND POSTNATAL DEVELOPMENT....................................................... 245 10 SPECIAL TOXICOLOGY STUDIES................................................................. 265 11 INTEGRATED SUMMARY AND SAFETY EVALUATION............................... 269 12 APPENDIX/ATTACHMENTS........................................................................... 277 2 NDA 22-512 Patricia Harlow, Ph.D. Table of Tables Table 1: Reviewer's Summary of Specified Impurities .................................................. 22 Table 2: Sponsor's Summary of Selectivity for Thrombin - Study U00-1351................. 34 Table 3: From Sponsor's Tables – Study U00-1457 – Coagulation Assays .................. 35 Table 4: Reviewer’s Summary - Activity of Forms of Dabigatran .................................. 36 Table 5: Sponsor's Summaries – Rabbit Venous Thrombosis – Study U06-1567......... 40 Table 6: Sponsor's Summary - Study U02-1700 ........................................................... 41 Table 7: Sponsor's Tables - Study U00-1588................................................................ 42 Table 8: From (b) (4) Study 8810448.......................................................................... 43 Table 9: From Sponsor's Body Temperature Tables – Study U05-1533 ....................... 45 Table 10: Modification of Sponsor's Tables – Study U06-1056..................................... 47 Table 11: Reviewer's Summary of Ranges of Individual Values – Study U06-1056...... 48 Table 12: Sponsor’s Summary Tables – Study U09-1332-02 ....................................... 51 Table 13: Sponsor's PK Overview Tables - Rats and Rabbits....................................... 52 Table 14: Sponsor's PK Overview Tables - Monkeys and Mice .................................... 52 Table 15: Sponsor's Summary – Study U05-2159 ........................................................ 53 Table 16: Sponsor’s Tables – Overview of Metabolites in Plasma................................ 57 Table 17: Sponsor's Overview of Metabolites in Urine and Feces ................................ 58 Table 18: Sponsor’s Summary - Protein Binding – Studies U00-1294 and U06-1211 .. 59 Table 19: Sponsor's Tables – Punched Samples – Study U00-1096 ............................ 60 Table 20: Sponsor's Tables – Radioluminography - Study U00-1096 ........................... 61 Table 21: Sponsor's Tables – Placental Transfer - Study U02-1372............................. 62 Table 22: Reviewer's Summary - Study U99-1767........................................................ 67 Table 23: Reviewer's Modification of Sponsor Tables - Study U99-1134...................... 67 Table 24: Reviewer's Summary - Study U05-1339........................................................ 68 Table 25: Reviewer’s Summary – Enzyme Kinetics – Study U07-1421 ........................ 68 Table 26: Sponsor's Tables – Study U99-1092............................................................. 71 Table 27: Sponsor’s Overview of Excretion in Animals ................................................. 71 Table 28: Sponsor's Tables – Study U06-1452............................................................. 72 Table 29: Reviewer's Summary of TK from Multiple Toxicology Studies......................
Recommended publications
  • The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by 41, Elsevier No. 4 - SupplPublisher S Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. PII S0735-1097(02)02687-6 The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary Syndromes John Eikelboom, MBBS, MSC, FRACP, FRCPA,* Harvey White, MB, CHB, DSC, FRACP, FACC,† Salim Yusuf, MBBS, DPHIL, FRCP (UK), FRCPC, FACC‡ Perth, Australia; Auckland, New Zealand; and Hamilton, Ontario, Canada The central role of thrombin in the initiation and propagation of intravascular thrombus provides a strong rationale for direct thrombin inhibitors in acute coronary syndromes (ACS). Direct thrombin inhibitors are theoretically likely to be more effective than indirect thrombin inhibitors, such as unfractionated heparin or low-molecular-weight heparin, because the heparins block only circulating thrombin, whereas direct thrombin inhibitors block both circulating and clot-bound thrombin. Several initial phase 3 trials did not demonstrate a convincing benefit of direct thrombin inhibitors over unfractionated heparin. However, the Direct Thrombin Inhibitor Trialists’ Collaboration meta-analysis confirms the superiority of direct thrombin inhibitors, particularly hirudin and bivalirudin, over unfractionated heparin for the prevention of death or myocardial infarction (MI) during treatment in patients with ACS, primarily due to a reduction in MI (odds ratio, 0.80; 95% confidence interval, 0.70 to 0.91) with little impact on death. The absolute risk reduction in the composite of death or MI at the end of treatment (0.8%) was similar at 30 days (0.7%), indicating no loss of benefit after cessation of therapy.
    [Show full text]
  • B1–Proteases As Molecular Targets of Drug Development
    Abstracts B1–Proteases as Molecular Targets of Drug Development B1-001 lin release from the beta cells. Furthermore, GLP-1 also stimu- DPP-IV structure and inhibitor design lates beta cell growth and insulin biosynthesis, inhibits glucagon H. B. Rasmussen1, S. Branner1, N. Wagtmann3, J. R. Bjelke1 and secretion, reduces free fatty acids and delays gastric emptying. A. B. Kanstrup2 GLP-1 has therefore been suggested as a potentially new treat- 1Protein Engineering, Novo Nordisk A/S, Bagsvaerd, Denmark, ment for type 2 diabetes. However, GLP-1 is very rapidly degra- 2Medicinal Chemistry, Novo Nordisk A/S, Maaloev, Denmark, ded in the bloodstream by the enzyme dipeptidyl peptidase IV 3Discovery Biology, Novo Nordisk A/S, Maaloev, DENMARK. (DPP-IV; EC 3.4.14.5). A very promising approach to harvest E-mail: [email protected] the beneficial effect of GLP-1 in the treatment of diabetes is to inhibit the DPP-IV enzyme, thereby enhancing the levels of The incretin hormones GLP-1 and GIP are released from the gut endogenously intact circulating GLP-1. The three dimensional during meals, and serve as enhancers of glucose stimulated insu- structure of human DPP-IV in complex with various inhibitors 138 Abstracts creates a better understanding of the specificity and selectivity of drug-like transition-state inhibitors but can be utilized for the this enzyme and allows for further exploration and design of new design of non-transition-state inhibitors that compete for sub- therapeutic inhibitors. The majority of the currently known DPP- strate binding. Besides carrying out proteolytic activity, the IV inhibitors consist of an alpha amino acid pyrrolidine core, to ectodomain of memapsin 2 also interacts with APP leading to which substituents have been added to optimize affinity, potency, the endocytosis of both proteins into the endosomes where APP enzyme selectivity, oral bioavailability, and duration of action.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Dabigatran, Rivaroxaban, and Warfarin in the Oldest Adults With
    CLINICAL INVESTIGATION Dabigatran, Rivaroxaban, and Warfarin in the Oldest Adults with Atrial Fibrillation in Taiwan Chao-Lun Lai, MD, PhD,*†‡§ Ho-Min Chen, MS,† Min-Tsun Liao, MD,* and Ting-Tse Lin, MD* mortality and cardiovascular mortality than those who OBJECTIVES: To compare the effectiveness and safety of used warfarin. Reduced-dose dabigatran was also associ- reduced-dose dabigatran, reduced-dose rivaroxaban, and warfa- ated with lower risk of intracranial hemorrhage than war- rin in individuals aged 85 and older with atrial fibrillation (AF). farin. J Am AmGeriatr GeriatrSoc Soc66:1567–1574, 2018. 2018. DESIGN: Retrospective cohort study. SETTING: Taiwan National Health Insurance claims database, 20112015. Key words: dabigatran; rivaroxaban; warfarin; effec- PARTICIPANTS: Individuals with AF aged 85 and older tiveness; safety; octogenarian (mean 88.6) with incident use of oral anticoagulants between June 1, 2012 and May 31, 2015 (N54,722; dabi- gatran 110 mg, n51,489; rivaroxaban 15 mg/10 mg, n51,736; warfarin, n51,497). MEASUREMENTS: Clinical outcomes included all-cause death, cardiovascular death, ischemic stroke, acute myocardial he risk of ischemic stroke is 5 times as high in individ- infarction, arterial embolism or thrombosis, intracranial hem- T uals with atrial fibrillation (AF) than in those with- orrhage, and gastrointestinal hemorrhage needing transfusion. out.1 Warfarin, the classic vitamin K antagonist, can reduce 2 Propensity score–matched analysis was performed, and the the risk of ischemic stroke by approximately 60%, but the marginal proportional hazards model was used to estimate the narrow therapeutic window and risk of bleeding complica- relative risk of various clinical outcomes in a matched tions associated with warfarin therapy have led to its being 1 dabigatran-warfarin cohort (n51,180 in each group) and a underused.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • DOACS COMPARISON and Faqs
    NOACS/DOACS*: PRACTICAL ISSUES AND FREQUENTLY-ASKED QUESTIONS OBJECTIVES: • To summarize characteristics of the direct oral anticoagulants (DOACs) currently available in Canada. • To address common practical issues related to DOAC use. • To address frequently asked questions regarding DOACs. BACKGROUND: The DOACs, which consist of apixaban, dabigatran, edoxaban, and rivaroxaban are used for the prevention and treatment of venous thromboembolism (VTE) and for stroke prevention in atrial fibrillation (AF). Practical advantages of DOACs over warfarin include fixed once- or twice-daily oral dosing without the need for coagulation test monitoring, relatively fewer known drug interactions and no known food interactions. Like warfarin, DOACs increase the risk for bleeding and should be administered under close clinical monitoring. Practical issues regarding the everyday use of DOACs will be addressed in this guide. PRACTICAL AND LIFESTYLE ISSUES: Can DOACs be taken with meals? Rivaroxaban should be taken with meals to enhance absorption; the tablet can be crushed and taken with soft foods such as applesauce. Apixaban, dabigatran, edoxaban can be taken with or without meals. However, taking dabigatran with meals can reduce dyspepsia. Dabigatran capsules should not be opened, broken or chewed before swallowing. Are there any foods or beverages that need to be avoided with DOACs? Unlike with warfarin, there are no known food interactions with DOACs, so there are no food restrictions when taking these medications. In addition, there is no evidence that drinking grapefruit juice affects the effectiveness or safety of DOACs. In general, it is acceptable for patients taking a DOAC to drink alcoholic beverages in moderation (e.g. a glass of wine with a meal) as it is for patients on warfarin.
    [Show full text]
  • 1 Oral Anticoagulants and Risk of Dementia: a Systematic Review
    Oral Anticoagulants and Risk of Dementia: A Systematic Review and Meta-analysis of Observational Studies and Randomized Controlled Trials Pajaree Mongkhon, PharmD1,2,3; Abdallah Y. Naser, MBA3; Laura Fanning, BPharm (Hons) MPH4; Gary Tse, PhD FACC FRCP5,6; Wallis C.Y. Lau, PhD3; Ian C.K. Wong, PhD3,7,8; Chuenjid Kongkaew, PhD1,3,9 1Centre for Safety and Quality in Health, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Thailand 2School of Pharmaceutical Sciences, University of Phayao, Thailand 3Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom 4Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia 5Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 6Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 7Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy University of Hong Kong 8Centre for Medication Optimisation Research and Education (CMORE), University College London Hospital, United Kingdom 9Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand 1 Corresponding author Chuenjid Kongkaew, Ph.D. Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University 99 Moo 9, Phitsanulok-Nakhon Sawan Road, Tha Pho, Mueang Phitsanulok, Phitsanulok 65000, Thailand. Tel: 66 55 961825 Fax: 66 55 963731 E-mail: [email protected] Word count: 4320 words (excluding title page, abstract, references, figures and tables) Number of references: 42 references Number of figures: 3 figures Number of tables: 3 tables 2 Abstract Atrial fibrillation (AF) is a documented risk factor for dementia.
    [Show full text]
  • Atrial Fibrillation
    CONFIDENTIAL NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE Premeeting briefing Dabigatran for the prevention of stroke and systemic embolism in atrial fibrillation This briefing presents the key issues arising from the manufacturer’s submission, Evidence Review Group (ERG) report and statements made by consultees and their nominated clinical specialists and patient experts. Please note that this briefing is a summary of the information available and should be read with the full supporting documents. The manufacturer was asked to…. provide justification for reducing the dabigatran treatment dose from 150 mg to 110 mg at 80 years of age comment on the impact of being unable to utilise P-glycoprotein inhibitors on the use of dabigatran and the management of atrial fibrillation provide a justification for choosing the mixed treatment comparison (MTC) (SAS) for the base case instead of the results from the MTC (WinBUGs) provide a comparison of the different hazard ratios from the MTC (SAS), MTC (WinBUGS) analyses and the direct pairwise results and justify any discrepancies justify the exclusion of trials with zero event arms from the MTC provide a revised model with the ability to choose any of the included treatments (dabigatran or warfarin) as either a first-line or a second-line treatment option provide base-case cost-effectiveness results comparing dabigatran 110 mg and 150 mg when used as either first-line treatment or as a second-line treatment following warfarin analyse and provide base-case cost-effectiveness comparing the results of the following treatment sequences: dabigatran → warfarin → aspirin → no treatment and warfarin → aspirin → no treatment.
    [Show full text]
  • Laboratory Monitoring of Direct Oral Anticoagulants (Doacs)
    biomedicines Review Laboratory Monitoring of Direct Oral Anticoagulants (DOACs) Claire Dunois HYPHEN BioMed, Sysmex Group, 95000 Neuville sur Oise, France; [email protected] Abstract: The introduction of direct oral anticoagulants (DOACs), such as dabigatran, rivaroxaban, apixaban, edoxaban, and betrixaban, provides safe and effective alternative to previous anticoagulant therapies. DOACs directly, selectively, and reversibly inhibit factors IIa or Xa. The coagulation effect follows the plasma concentration–time profile of the respective anticoagulant. The short half-life of a DOAC constrains the daily oral intake. Because DOACs have predictable pharmacokinetic and pharmacodynamic responses at a fixed dose, they do not require monitoring. However in specific clinical situations and for particular patient populations, testing may be helpful for patient management. The effect of DOACs on the screening coagulation assays such as prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) is directly linked to reagent composition, and clotting time can be different from reagent to reagent, depending on the DOAC’s reagent sensitivity. Liquid chromatography–mass spectrometry (LC-MS/MS) is considered the gold standard method for DOAC measurement, but it is time consuming and requires expensive equipment. The general consensus for the assessment of a DOAC is clotting or chromogenic assays using specific standard calibrators and controls. This review provides a short summary of DOAC properties and an update on laboratory methods for measuring DOACs. Keywords: DOAC; monitoring; screening assays; quantitative assays Citation: Dunois, C. Laboratory Monitoring of Direct Oral Anticoagulants (DOACs). 1. Introduction Biomedicines 2021, 9, 445. https:// Direct oral anticoagulants (DOACs) constitute first-line therapy used for many throm- doi.org/10.3390/biomedicines9050445 boembolic indications, such as prevention and treatment of venous thromboembolism (VTE) and stroke prevention in atrial fibrillation (AF) [1,2].
    [Show full text]
  • Anticoagulant Pradaxa (Dabigatran Etexilate Mesylate) Savaysa (Edoxaban) Xarelto 2.5Mg (Rivaroxaban) Effective 01/01/2021
    Anticoagulant Pradaxa (dabigatran etexilate mesylate) Savaysa (edoxaban) Xarelto 2.5mg (rivaroxaban) Effective 01/01/2021 ☒ MassHealth Plan ☒ ☐Commercial/Exchange Prior Authorization Program Type ☒ Quantity Limit ☒ Pharmacy Benefit Benefit ☐ Step Therapy ☐ Medical Benefit (NLX) Specialty N/A Limitations Specialty Medications All Plans Phone: 866-814-5506 Fax: 866-249-6155 Non-Specialty Medications Contact MassHealth Phone: 877-433-7643 Fax: 866-255-7569 Information Commercial Phone: 800-294-5979 Fax: 888-836-0730 Exchange Phone: 855-582-2022 Fax: 855-245-2134 Medical Specialty Medications (NLX) All Plans Phone: 844-345-2803 Fax: 844-851-0882 Exceptions N/A Overview Xarelto and Savaysa are factor Xa inhibitors which inhibit platelet activation and fibrin clot formation. Pradaxa is a thrombin inhibitor which blocks free and fibrin bound thrombin. These medications are indicated for: . Treatment of deep venous thrombosis (DVT) and pulmonary embolism (PE) – Pradaxa and Savaysa . Prevention of stroke and systemic embolism in patients with nonvalvular atrial fibrillation. – Pradaxa, Xarelto, and Savaysa . Prophylaxis of DVT and/or PE in patients who have undergone total hip arthroplasty. - Xarelto and Pradaxa . Prophylaxis of venous thromboembolism (VTE) – Xarelto . Reduction in the risk of recurrence of deep vein thrombosis (DVT) and pulmonary embolism (PE) – Xarelto . Reduction of risk of major cardiovascular (CV) events (CV death, myocardial infarction, and stroke) in patients with coronary artery disease (chronic) or peripheral artery disease. - Xarelto No PA PA required Pradaxa® (dabigatran etexilate mesylate 110 mg) ≤ 70 Pradaxa® (dabigatran etexilate mesylate 75 mg, 150 capsules/365 days mg) Pradaxa® (dabigatran etexilate mesylate 110 mg) > 70 Eliquis® (apixaban) PD capsules/365 days ® ® Xarelto (rivaroxaban 10 mg, 15 mg, 20 mg, starter pack) Savaysa (edoxaban) ® Xarelto (rivaroxaban 2.5 mg tablet) PD Preferred Drug.
    [Show full text]
  • Final Program
    In Memoriam: Final Program XXV Congress of the International Society on Thrombosis and Haemostasis and 61st Annual SSC Meeting June 20 – 25, 2015 Toronto, Canada www.isth2015.org 1 Final Program Table of Contents 3 Venue and Contacts 5 Invitation and Welcome Message 12 ISTH 2015 Committees 24 Congress Support 25 Sponsors and Exhibitors 27 ISTH Awards 32 ISTH Society Information 37 Program Overview 41 Program Day by Day 55 SSC and Educational Program 83 Master Classes and Career Mentorship Sessions 87 Nurses Forum 93 Scientific Program, Monday, June 22 94 Oral Communications 1 102 Plenary Lecture 103 State of the Art Lectures 105 Oral Communications 2 112 Abstract Symposia 120 Poster Session 189 Scientific Program, Tuesday, June 23 190 Oral Communications 3 198 Plenary Lecture 198 State of the Art Lectures 200 Oral Communications 4 208 Plenary Lecture 209 Abstract Symposia 216 Poster Session 285 Scientific Program, Wednesday, June 24 286 Oral Communications 5 294 Plenary Lecture 294 State of the Art Lectures 296 Oral Communications 6 304 Abstract Symposia 311 Poster Session 381 Scientific Program, Thursday, June 25 382 Oral Communications 7 390 Plenary Lecture 390 Abstract Symposia 397 Highlights of ISTH 399 Exhibition Floor Plan 402 Exhibitor List 405 Congress Information 406 Venue Plan 407 Congress Information 417 Social Program 418 Toronto & Canada Information 421 Transportation in Toronto 423 Future ISTH Meetings and Congresses 2 427 Authors Index 1 Thank You to Everyone Who Supported the Venue and Contacts 2014 World Thrombosis Day
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]