HD 66051, an Eclipsing Binary Hosting a Highly Peculiar, Hgmn-Related Star
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Case for an Atmosphere on Super-Earth 55 Cancri E
The Astronomical Journal, 154:232 (8pp), 2017 December https://doi.org/10.3847/1538-3881/aa9278 © 2017. The American Astronomical Society. All rights reserved. A Case for an Atmosphere on Super-Earth 55 Cancri e Isabel Angelo1,2 and Renyu Hu1,3 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; [email protected] 2 Department of Astronomy, University of California, Campbell Hall, #501, Berkeley CA, 94720, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 2017 August 2; revised 2017 October 6; accepted 2017 October 8; published 2017 November 16 Abstract One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 Through 2009
Vol. 6 No. 3 July 1, 2010 Journal of Double Star Observations Page 180 Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 through 2009 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: Using a 10” Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of “lucky images”, measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented. mented double stars, as will be described in the next Introduction section. Generally, I used a red filter to cope with By using the technique of “lucky imaging”, seeing chromatic aberration of the Barlow lens, as well as to effects can strongly be reduced, and not only the reso- reduce the atmospheric spectrum. For systems with lution of a given telescope can be pushed to its limits, pronounced color contrast, I also made recordings but also the accuracy of position measurements can be with near-IR, green and blue filters in order to pro- better than this by about one order of magnitude. This duce composite images. This setup was the same as I has already been demonstrated in earlier papers in used with telescopes under the southern sky, and as I this journal [1-3]. Standard deviations of separation have described previously [1-3]. Exposure times varied measurements of less than +/- 0.05 msec were rou- between 0.5 msec and 100 msec, depending on the tinely obtained with telescopes of 40 or 50 cm aper- star brightness, and on the seeing. -
The Universe Contents 3 HD 149026 B
History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture . -
Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius. -
Gravitational-Wave Mission Concept Study Final Report
National Aeronautics and Space Administration Gravitational-Wave Mission Concept Study Final Report August 9, 2012 On the Cover... A supercomputer simulation of gravitational waves emanating from two merging black holes. Credit: NASA/Chris Henze National Aeronautics and Space Administration Gravitational-Wave Mission Concept Study Final Report Submitted to Astrophysics Division Science Mission Directorate NASA Headquarters and Physics of the Cosmos Program Office Astrophysics Projects Division NASA Goddard Space Flight Center Written by Gravitational-Wave Community Science Team, Gravitational-Wave Core Team, and Gravitational-Wave Science Task Force August 9, 2012 National Aeronautics and Space Administration Gravitational-Wave Mission Concept Study Final Report Signature Page Approved by: Kenneth Anderson Date July 20, 2012 Study Manager Goddard Space Flight Center Code 440 Approved by: Dr. Robin T. Stebbins Date July 20, 2012 Study Scientist Goddard Space Flight Center Code 663 Approved by: Dr. Rainer Weiss Date July 20, 2012 Community Science Team Co-Chair Massachusetts Institute of Technology Approved by: Dr. Edward Wright Date July 20, 2012 Community Science Team Co-Chair University of California, Los Angeles Gravitational-Wave Mission Concept Study Final Report Table of Contents EXECUTIVE SUMMARY 1 1 INTRODUCTION 7 1.1 Gravitational-Wave Science 8 1.2 Context 9 1.3 Goals and Structure of the Study 10 1.3.1 Study Goals 10 1.3.2 Primary Gravitational-Wave Science Objectives 10 1.3.3 Elements of the Study 11 1.4 A Primer on Gravitational-Wave -
A Planet at 5 AU Around 55 Cancri 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Submitted to The Astrophysical Journal. A Planet at 5 AU Around 55 Cancri 1 Geoffrey W. Marcy2;3,R.PaulButler4,DebraA.Fischer2, Greg Laughlin5,StevenS. Vogt5,GregoryW.Henry6, Dimitri Pourbaix7 ABSTRACT 1Based on observations obtained at Lick Observatory, which is operated by the University of California, and on observations obtained at the W.M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. 2Department of Astronomy, University of California, Berkeley, CA USA 94720 3Department of Physics and Astronomy, San Francisco State University, San Francisco, CA USA 94132 4Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington DC, USA 20015-1305 5UCO/Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA, USA 95064 6Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37203-3401. 7FNRS post-doctoral fellow, Institut d'Astronomie et d'Astrophysique, Universit´e Libre de Bruxelles, C.P. 226 Boulevard de Triomphe, B-1050 Bruxelles, Belgium. –2– We report precise Doppler shift measurements of 55 Cancri (G8V) obtained from 1989 to 2002 at Lick Observatory. The velocities reveal evidence for an outer planetary companion to 55 Cancri orbiting at 5.5 AU. The velocities also confirm a second, inner planet at 0.11 AU. The outer planet is the first extrasolar planet found that orbits near or beyond the orbit of Jupiter. It was drawn from asampleof 50 stars observed with sufficient duration and quality to detect a ∼ giant planet at 5 AU, implying that such planets are not rare. -
Lists and Charts of Autostar Named Stars
APPENDIX A Lists and Charts of Autostar Named Stars Table A.I provides a list of named stars that are stored in the Autostar database. Following the list, there are constellation charts which show where the stars are located. The names are in alphabetical orderalong with their Latin designation (see Appendix B for complete list ofconstellations). Names in brackets 0 in the table denote a different spelling to one that is known in the list. The star's co-ordinates are set to the same as accuracy as the Autostar co-ordinates i.e. the RA or Dec 'sec' values are omitted. Autostar option: Select Item: Object --+ Star --+ Named 215 216 Appendix A Table A.1. Autostar Named Star List RA Dec Named Star Fig. Ref. latin Designation Hr Min Deg Min Mag Acamar A5 Theta Eridanus 2 58 .2 - 40 18 3.2 Achernar A5 Alpha Eridanus 1 37.6 - 57 14 0.4 Acrux A4 Alpha Crucis 12 26.5 - 63 05 1.3 Adara A2 EpsilonCanis Majoris 6 58.6 - 28 58 1.5 Albireo A4 BetaCygni 19 30.6 ++27 57 3.0 Alcor Al0 80 Ursae Majoris 13 25.2 + 54 59 4.0 Alcyone A9 EtaTauri 3 47.4 + 24 06 2.8 Aldebaran A9 Alpha Tauri 4 35.8 + 16 30 0.8 Alderamin A3 Alpha Cephei 21 18.5 + 62 35 2.4 Algenib A7 Gamma Pegasi 0 13.2 + 15 11 2.8 Algieba (Algeiba) A6 Gamma leonis 10 19.9 + 19 50 2.6 Algol A8 Beta Persei 3 8.1 + 40 57 2.1 Alhena A5 Gamma Geminorum 6 37.6 + 16 23 1.9 Alioth Al0 EpsilonUrsae Majoris 12 54.0 + 55 57 1.7 Alkaid Al0 Eta Ursae Majoris 13 47.5 + 49 18 1.8 Almaak (Almach) Al Gamma Andromedae 2 3.8 + 42 19 2.2 Alnair A6 Alpha Gruis 22 8.2 - 46 57 1.7 Alnath (Elnath) A9 BetaTauri 5 26.2 -
Information Bulletin on Variable Stars
COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos March November EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN H BUDAPEST XI I Box HUNGARY HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS E PAUNZEN G HANDLER Pulsation of HD and HD :::: E PAUNZEN WW WEISS R KUSCHNIG Nonvariability among Bo o Star I ESO and Data :::::::::::::::::::::::::::::::::: PA HECKERT Photometry of SV Camelopardalis :::::::::::::::: M WOLF L SAROUNOVA P MOLIK Period Changes in V Ophiuchi ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::: RM ROBB MD GLADDERS Optical Observations of the Active Star FF Cancri ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::: U BASTIAN E BORN F AGERER M DAHM V GROSSMANN V MAKAROV Conrmation of the -
GSMT and JWST: Looking Back to the Future of the Universe
GSMT AND JWST: Looking Back to the Future of the Universe istory will record that American scientists We see now that the history of the Universe is the launched one of humankind’s greatest back story to our own existence. We have met all the Hintellectual adventures early in the 20th major characters in this story, from the trillions of century. Building giant telescopes that dwarfed their common stars to the exotic massive black holes in predecessors, astronomers began to wrestle with our galaxy cores that power the phenomenal blasts of ancient, most compelling mysteries: Where are we? quasar light. Now, as the 21st century begins, astrono- What are we? And where do we come from? These mers prepare to read the final chapter in this great giant machines of glass and steel, growing decade by mystery story. They seek to use astronomy’s powerful decade, revealed a Universe of intimidating size and magic—looking out into space to see back in time—to imponderable age, but more remarkably, one within see how our modern Universe came to be. Brought to human understanding. the threshold of this final step by amazing telescopes— With an explosion of tools, observations, and ideas notably the Hubble Space Telescope (HST) and the building to a crescendo by century’s end, astronomers Keck ground-based telescopes—we examine the feeble succeeded beyond their expectations: today, we light that emerged long ago when the Universe was in routinely describe the size, age, and contents of a its youth. Yet we must go further out, further back. -
ABUNDANCE DERIVATIONS for the SECONDARY STARS in CATACLYSMIC VARIABLES from NEAR-INFRARED SPECTROSCOPY Thomas E
The Astrophysical Journal, 833:14 (30pp), 2016 December 10 doi:10.3847/0004-637X/833/1/14 © 2016. The American Astronomical Society. All rights reserved. ABUNDANCE DERIVATIONS FOR THE SECONDARY STARS IN CATACLYSMIC VARIABLES FROM NEAR-INFRARED SPECTROSCOPY Thomas E. Harrison1,2 Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001, USA; [email protected] Received 2016 August 3; revised 2016 September 2; accepted 2016 September 29; published 2016 December 1 ABSTRACT We derive metallicities for 41 cataclysmic variables (CVs) from near-infrared spectroscopy. We use synthetic spectra that cover the 0.8 μmλ2.5μm bandpass to ascertain the value of [Fe/H] for CVs with K-type donors, while also deriving abundances for other elements. Using calibrations for determining [Fe/H] from the K- band spectra of M-dwarfs, we derive more precise values for Teff for the secondaries in the shortest period CVs, and examine whether they have carbon deficits. In general, the donor stars in CVs have subsolar metallicities. We confirm carbon deficits for a large number of systems. CVs with orbital periods >5 hr are most likely to have unusual abundances. We identify four CVs with CO emission. We use phase-resolved spectra to ascertain the mass and radius of the donor in U Gem. The secondary star in U Gem appears to have a lower apparent gravity than a main sequence star of its spectral type. Applying this result to other CVs, we find that the later-than-expected spectral types observed for many CV donors are mostly an effect of inclination. -
Observing List
day month year Epoch 2000 local clock time: 2.00 Observing List for 16 12 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 28 303 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 21 312 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 28 299 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 16 312 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 16 311 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 16 312 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 25 299 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 32 301 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 13 327 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 15 287 Aries 1 Arietis 6.2 7.2 2.8 fine yellow & pale blue pair 1 50.1 22 17 25 282 Aries 30 Arietis 6.6 7.4 38.6 pleasing yellow pair 2 37 24 39 27 284 Aries 33 Arietis 5.5 8.4 28.6 yellowish-white & blue pair 2 40.7 27 4 27 276 Aries 48, Epsilon Arietis 5.2 5.5 1.5 white pair, splittable @ 150x 2 59.2 21 20 13 284 Aries 5, Gamma Arietis (*262) 4.8 4.8 7.8 nice bluish-white pair 1 53.5 19 18 17 287 Aries 9, Lambda Arietis (*264) 4.9 7.7 37.4 yellow-wht & pale blue 1 57.9 23 36 27 287 Aries NGC972 Galaxy, oval shaped 2 34.2 29 19 63 265 Auriga M36 Pinwheel Cluster open cluster of a dozen or so young stars (30million years old) 5 36.1 34 8 65 259 Auriga M37 January Salt and Pepper Cluster