Phyre 2 Results for P50277

Total Page:16

File Type:pdf, Size:1020Kb

Phyre 2 Results for P50277 Email [email protected] Description P50277 Mon Jul 2 19:25:55 BST Date 2012 Unique Job 2972c4295ed43821 ID Detailed template information # Template Alignment Coverage 3D Model Confidence % i.d. Template Information PDB header:transferase Chain: B: PDB Molecule:adenosylmethionine-8-amino-7- 1 c4a0rB_ Alignment 100.0 23 oxononanoate PDBTitle: structure of bifunctional dapa aminotransferase-dtb synthetase from2 arabidopsis thaliana bound to dethiobiotin (dtb). PDB header:transferase Chain: A: PDB Molecule:aminotransferase, class iii; 2 c3hmuA_ 100.0 27 Alignment PDBTitle: crystal structure of a class iii aminotransferase from2 silicibacter pomeroyi PDB header:transferase Chain: D: PDB Molecule:adenosylmethionine-8-amino-7- 3 c3n5mD_ Alignment 100.0 28 oxononanoate aminotransferase; PDBTitle: crystals structure of a bacillus anthracis aminotransferase PDB header:transferase Chain: A: PDB Molecule:putative aminotransferase; 4 c3fcrA_ 100.0 24 Alignment PDBTitle: crystal structure of putative aminotransferase (yp_614685.1) from2 silicibacter sp. tm1040 at 1.80 a resolution PDB header:transferase Chain: A: PDB Molecule:omega transaminase; 5 c4a6tA_ 100.0 27 Alignment PDBTitle: crystal structure of the omega transaminase from2 chromobacterium violaceum in complex with plp PDB header:transferase Chain: B: PDB Molecule:aminotransferase; 6 c3i5tB_ 100.0 25 Alignment PDBTitle: crystal structure of aminotransferase prk07036 from rhodobacter2 sphaeroides kd131 PDB header:transferase Chain: A: PDB Molecule:adenosylmethionine-8-amino-7- oxononanoate aminotransferase; 7 c3lv2A_ 100.0 41 Alignment PDBTitle: crystal structure of mycobacterium tuberculosis 7,8- diaminopelargonic2 acid synthase in complex with substrate analog sinefungin Fold:PLP-dependent transferase-like 8 d1s0aa_ Alignment 100.0 48 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: A: PDB Molecule:adenosylmethionine-8-amino-7- 9 c3bv0A_ Alignment 100.0 42 oxononanoate aminotransferase; PDBTitle: crystal structure of plp bound 7,8-diaminopelargonic acid synthase in2 mycobacterium tuberculosis PDB header:transferase Chain: X: PDB Molecule:omega-amino acid--pyruvate 10 c3a8uX_ Alignment 100.0 23 aminotransferase; PDBTitle: crystal structure of omega-amino acid:pyruvate aminotransferase Fold:PLP-dependent transferase-like 11 d1ohwa_ Alignment 100.0 18 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: A: PDB Molecule:l-lysine-epsilon aminotransferase; 12 c2cjdA_ 100.0 21 Alignment PDBTitle: lysine aminotransferase from m. tuberculosis in external2 aldimine form PDB header:transferase Chain: B: PDB Molecule:4-aminobutyrate transaminase; 13 c3oksB_ 100.0 24 Alignment PDBTitle: crystal structure of 4-aminobutyrate transaminase from mycobacterium2 smegmatis PDB header:transferase Chain: D: PDB Molecule:4-aminobutyrate aminotransferase 14 c4ffcD_ Alignment 100.0 25 (gabt); PDBTitle: crystal structure of a 4-aminobutyrate aminotransferase (gabt) from2 mycobacterium abscessus PDB header:transferase Chain: A: PDB Molecule:419aa long hypothetical 15 c2eo5A_ Alignment 100.0 25 aminotransferase; PDBTitle: crystal structure of 4-aminobutyrate aminotransferase from sulfolobus2 tokodaii strain7 Fold:PLP-dependent transferase-like 16 d1zoda1 Alignment 100.0 21 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:isomerase Chain: A: PDB Molecule:glutamate-1-semialdehyde 2,1- 17 c2e7uA_ Alignment 100.0 21 aminomutase; PDBTitle: crystal structure of glutamate-1-semialdehyde 2,1- aminomutase from2 thermus thermophilus hb8 PDB header:isomerase Chain: A: PDB Molecule:glutamate-1-semialdehyde 2,1- aminomutase; 18 c3bs8A_ 100.0 23 Alignment PDBTitle: crystal structure of glutamate 1-semialdehyde aminotransferase2 complexed with pyridoxamine-5'-phosphate from bacillus subtilis PDB header:transferase Chain: A: PDB Molecule:adenosylmethionine-8-amino-7- 19 c3dodA_ Alignment 100.0 31 oxononanoate aminotransferase; PDBTitle: crystal structure of plp bound 7,8-diaminopelargonic acid synthase in2 bacillus subtilis Fold:PLP-dependent transferase-like 20 d2gsaa_ Alignment 100.0 21 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: B: PDB Molecule:beta-transaminase; 21 c2ykyB_ not modelled 100.0 20 Alignment PDBTitle: structural determinants of the beta-selectivity of a bacterial2 aminotransferase Fold:PLP-dependent transferase-like 22 d1sffa_ Alignment not modelled 100.0 21 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: A: PDB Molecule:pyruvate transaminase; 23 c3nuiA_ not modelled 100.0 24 Alignment PDBTitle: crystal structure of omega-transferase from vibrio fluvialis js17 PDB header:isomerase Chain: A: PDB Molecule:alpha-amino-epsilon-caprolactam 24 c3dxvA_ Alignment not modelled 100.0 23 racemase; PDBTitle: the crystal structure of alpha-amino-epsilon-caprolactam racemase from2 achromobacter obae Fold:PLP-dependent transferase-like 25 d2byla1 Alignment not modelled 100.0 25 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:aminotransferase 26 c1oatB_ Alignment not modelled 100.0 25 Chain: B: PDB Molecule:ornithine aminotransferase; PDBTitle: ornithine aminotransferase PDB header:isomerase Chain: A: PDB Molecule:glutamate-1-semialdehyde 2,1- 27 c2zsmA_ Alignment not modelled 100.0 21 aminomutase; PDBTitle: crystal structure of glutamate-1-semialdehyde 2,1-2 aminomutase from aeropyrum pernix, hexagonal form PDB header:isomerase Chain: A: PDB Molecule:glutamate-1-semialdehyde 2,1- 28 c4e77A_ Alignment not modelled 100.0 22 aminomutase; Alignment PDBTitle: 2.0a crystal structure of a glutamate-1-semialdehyde aminotransferase2 from yersinia pestis co92 PDB header:isomerase Chain: A: PDB Molecule:glutamate-1-semialdehyde 2,1- 29 c3l44A_ Alignment not modelled 100.0 20 aminomutase 1; PDBTitle: crystal structure of bacillus anthracis heml-1, glutamate semialdehyde2 aminotransferase PDB header:transferase Chain: B: PDB Molecule:ornithine aminotransferase; 30 c3ruyB_ not modelled 100.0 26 Alignment PDBTitle: crystal structure of the ornithine-oxo acid transaminase rocd from2 bacillus anthracis Fold:PLP-dependent transferase-like 31 d1z7da1 Alignment not modelled 100.0 24 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: A: PDB Molecule:acetylornithine aminotransferase; 32 c2ordA_ Alignment not modelled 100.0 28 PDBTitle: crystal structure of acetylornithine aminotransferase (ec 2.6.1.11)2 (acoat) (tm1785) from thermotoga maritima at 1.40 a resolution PDB header:transferase Chain: B: PDB Molecule:acetylornithine/succinyldiaminopimelate aminotransferase; 33 c2pb2B_ not modelled 100.0 27 Alignment PDBTitle: structure of biosynthetic n-acetylornithine aminotransferase from2 salmonella typhimurium: studies on substrate specificity and3 inhibitor binding PDB header:transferase Chain: A: PDB Molecule:d-phenylglycine aminotransferase; 34 c2cy8A_ not modelled 100.0 19 Alignment PDBTitle: crystal structure of d-phenylglycine aminotransferase (d- phgat) from2 pseudomonas strutzeri st-201 Fold:PLP-dependent transferase-like 35 d1vefa1 Alignment not modelled 100.0 28 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: E: PDB Molecule:ornithine aminotransferase; 36 c1z7dE_ not modelled 100.0 24 Alignment PDBTitle: ornithine aminotransferase py00104 from plasmodium yoelii PDB header:transferase Chain: A: PDB Molecule:acetylornithine aminotransferase; 37 c3nx3A_ not modelled 100.0 27 Alignment PDBTitle: crystal structure of acetylornithine aminotransferase (argd) from2 campylobacter jejuni PDB header:transferase Chain: C: PDB Molecule:aminotransferase, class iii; 38 c3i4jC_ not modelled 100.0 21 Alignment PDBTitle: crystal structure of aminotransferase, class iii from2 deinococcus radiodurans PDB header:transferase Chain: A: PDB Molecule:acetylornithine aminotransferase; 39 c2eh6A_ not modelled 100.0 31 Alignment PDBTitle: crystal structure of acetylornithine aminotransferase from aquifex2 aeolicus vf5 Fold:PLP-dependent transferase-like 40 d2cfba1 Alignment not modelled 100.0 24 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase 41 c2w8wA_ Alignment not modelled 100.0 14 Chain: A: PDB Molecule:serine palmitoyltransferase; PDBTitle: n100y spt with plp-ser Fold:PLP-dependent transferase-like 42 d1fc4a_ Alignment not modelled 100.0 14 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: A: PDB Molecule:serine palmitoyltransferase; 43 c3a2bA_ not modelled 100.0 16 Alignment PDBTitle: crystal structure of serine palmitoyltransferase from sphingobacterium2 multivorum with substrate l-serine Fold:PLP-dependent transferase-like 44 d1bs0a_ Alignment not modelled 100.0 18 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase Chain: A: PDB Molecule:2-amino-3-ketobutyrate coenzyme a 45 c3tqxA_ Alignment not modelled 100.0 13 ligase; PDBTitle: structure of the 2-amino-3-ketobutyrate coenzyme a ligase (kbl) from2 coxiella burnetii Fold:PLP-dependent transferase-like 46 d2bwna1 Alignment not modelled 100.0 11 Superfamily:PLP-dependent transferases Family:GABA-aminotransferase-like PDB header:transferase 47 c3hqtB_ Alignment not modelled 100.0 14 Chain: B: PDB Molecule:cai-1 autoinducer synthase; PDBTitle: plp-dependent acyl-coa
Recommended publications
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • AMPK Signaling Regulates Expression of Urea Cycle Enzymes in Response to Changes in Dietary Protein Intake
    bioRxiv preprint doi: https://doi.org/10.1101/439380; this version posted October 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. AMPK signaling regulates expression of urea cycle enzymes in response to changes in dietary protein intake Sandra Kirsch Heibel1Y, Peter J McGuire2Y, Nantaporn Haskins1, Himani Datta Majumdar1, Sree Rayavarapu1‡, Kanneboyina Nagaraju3, Yetrib Hathout3, Kristy Brown1, Mendel Tuchman1, Ljubica Caldovic1*, 1 Center for Genetic Medicine Research/Children's National Medical Center, Washington, DC, USA 2 National Human Genome Research Institute/National Institutes for Health, Bethesda, MD, USA 3 Department of Pharmaceutical Sciences/Binghamton University, Binghamton NY, USA YThese authors contributed equally to this work. ‡Current address: Division of Clinical Review, Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research/Food and Drug Administration, Silver Spring, MD, USA * [email protected] Abstract Abundance of urea cycle enzymes in the liver is regulated by the dietary protein intake. Although urea cycle enzyme levels rise in response to a high protein diet, signaling networks that sense dietary protein intake and trigger changes in expression of urea cycle genes have not been identified. The aim of this study was to identify signaling pathway(s) that respond to changes in protein intake and regulate expression of urea cycle genes in mice and human hepatocytes. Mice were adapted to either control or high (HP) protein diets followed by isolation of liver protein and mRNA and integrated analysis of the proteomic and transcriptome profiles.
    [Show full text]
  • AGXT Gene Mutations and Their Influence on Clinical Heterogeneity of Type 1 Primary Hyperoxaluria
    J Am Soc Nephrol 12: 2072–2079, 2001 AGXT Gene Mutations and Their Influence on Clinical Heterogeneity of Type 1 Primary Hyperoxaluria ANTONIO AMOROSO,*† DOROTI PIRULLI,* FIORELLA FLORIAN,‡ DANIELA PUZZER,† MICHELE BONIOTTO,* SERGIO CROVELLA,* SILVIA ZEZLINA,† ANDREA SPANO` ,† GINA MAZZOLA,§ SILVANA SAVOLDI,࿣ CRISTINA FERRETTINI,¶ SILVIA BERUTTI,¶ MICHELE PETRARULO,¶ and MARTINO MARANGELLA¶ *Section of Genetics, Department of Reproductive and Developmental Science, University of Trieste, Trieste, Italy; †Medical Genetics Service, IRCCS Burlo Garofolo, Trieste, Italy; ‡Department of Biology, University of Trieste, Trieste, Italy; §Transplant Immunology Service, Ospedale S. Giovanni Battista di Torino, Torino, Italy; ࿣Division of Nephrology and Dialysis, Azienda Ospedaliera Triestina, Trieste, Italy; and ¶Renal Stones Center, Ospedale Mauriziano Umberto I, Torino, Italy. Abstract. Primary hyperoxaluria type 1 (PH1) is an autosomal were performed. Both mutant alleles were found in 21 out of recessive disorder that is caused by a deficiency of alanine: 23 patients, and 13 different mutations were recognized in glyoxylate aminotransferase (AGT), which is encoded by a exons 1, 2, 4, and 10. Normalized AGT activity was lower in single copy gene (AGXT). Molecular diagnosis was used in the severe form than in the adult form (P Ͻ 0.05). Double conjunction with clinical, biochemical, and enzymological data heterozygous patients presented a lower age at the onset of the to evaluate genotype-phenotype correlation. Twenty-three un- disease (P ϭ 0.025), and they were more frequent in group A related, Italian PH1 patients were studied, 20 of which were (75%) than in the group B (14%; P ϭ 0.0406). The T444C grouped according to severe form of PH1 (group A), adult mutation was more frequent in the severe form (P Ͻ 0.05), and form (group B), and mild to moderate decrease in renal func- the opposite was observed for G630A (P Ͻ 0.05).
    [Show full text]
  • Primary Hyperoxaluria Type 1: AGT Mistargeting Highlights the Fundamental Differences Between the Peroxisomal and Mitochondrial Protein Import Pathways
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1763 (2006) 1776–1784 www.elsevier.com/locate/bbamcr Review Primary hyperoxaluria type 1: AGT mistargeting highlights the fundamental differences between the peroxisomal and mitochondrial protein import pathways Christopher J. Danpure Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Received 28 April 2006; received in revised form 1 August 2006; accepted 18 August 2006 Available online 24 August 2006 Abstract Primary hyperoxaluria type 1 (PH1) is an atypical peroxisomal disorder, as befits a deficiency of alanine:glyoxylate aminotransferase (AGT), which is itself an atypical peroxisomal enzyme. PH1 is characterized by excessive synthesis and excretion of the metabolic end-product oxalate and the progressive accumulation of insoluble calcium oxalate in the kidney and urinary tract. Disease in many patients is caused by a unique protein trafficking defect in which AGT is mistargeted from peroxisomes to mitochondria, where it is metabolically ineffectual, despite remaining catalytically active. Although the peroxisomal import of human AGT is dependent upon the PTS1 import receptor PEX5p, its PTS1 is exquisitely specific for mammalian AGT, suggesting the presence of additional peroxisomal targeting information elsewhere in the AGT molecule. This and many other functional peculiarities of AGT are probably a consequence of its rather chequered evolutionary history, during which much of its time has been spent being a mitochondrial, rather than a peroxisomal, enzyme. Analysis of the molecular basis of AGT mistargeting in PH1 has thrown into sharp relief some of the fundamental differences between the requirements of the peroxisomal and mitochondrial protein import pathways, particularly the properties of peroxisomal and mitochondrial matrix targeting sequences and the different conformational limitations placed upon importable cargos.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub
    US 2003O19897OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0198970 A1 Roberts (43) Pub. Date: Oct. 23, 2003 (54) GENOSTICS clinical trials on groups or cohorts of patients. This group data is used to derive a Standardised method of treatment (75) Inventor: Gareth Wyn Roberts, Cambs (GB) which is Subsequently applied on an individual basis. There is considerable evidence that a significant factor underlying Correspondence Address: the individual variability in response to disease, therapy and FINNEGAN, HENDERSON, FARABOW, prognosis lies in a person's genetic make-up. There have GARRETT & DUNNER been numerous examples relating that polymorphisms LLP within a given gene can alter the functionality of the protein 1300 ISTREET, NW encoded by that gene thus leading to a variable physiological WASHINGTON, DC 20005 (US) response. In order to bring about the integration of genomics into medical practice and enable design and building of a (73) Assignee: GENOSTIC PHARMA LIMITED technology platform which will enable the everyday practice (21) Appl. No.: 10/206,568 of molecular medicine a way must be invented for the DNA Sequence data to be aligned with the identification of genes (22) Filed: Jul. 29, 2002 central to the induction, development, progression and out come of disease or physiological States of interest. Accord Related U.S. Application Data ing to the invention, the number of genes and their configu rations (mutations and polymorphisms) needed to be (63) Continuation of application No. 09/325,123, filed on identified in order to provide critical clinical information Jun. 3, 1999, now abandoned. concerning individual prognosis is considerably less than the 100,000 thought to comprise the human genome.
    [Show full text]
  • Metabolic Network-Based Stratification of Hepatocellular Carcinoma Reveals Three Distinct Tumor Subtypes
    Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes Gholamreza Bidkhoria,b,1, Rui Benfeitasa,1, Martina Klevstigc,d, Cheng Zhanga, Jens Nielsene, Mathias Uhlena, Jan Borenc,d, and Adil Mardinoglua,b,e,2 aScience for Life Laboratory, KTH Royal Institute of Technology, SE-17121 Stockholm, Sweden; bCentre for Host-Microbiome Interactions, Dental Institute, King’s College London, SE1 9RT London, United Kingdom; cDepartment of Molecular and Clinical Medicine, University of Gothenburg, SE-41345 Gothenburg, Sweden; dThe Wallenberg Laboratory, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden; and eDepartment of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, and approved November 1, 2018 (received for review April 27, 2018) Hepatocellular carcinoma (HCC) is one of the most frequent forms of of markers associated with recurrence and poor prognosis (13–15). liver cancer, and effective treatment methods are limited due to Moreover, genome-scale metabolic models (GEMs), collections tumor heterogeneity. There is a great need for comprehensive of biochemical reactions, and associated enzymes and transporters approaches to stratify HCC patients, gain biological insights into have been successfully used to characterize the metabolism of subtypes, and ultimately identify effective therapeutic targets. We HCC, as well as identify drug targets for HCC patients (11, 16–18). stratified HCC patients and characterized each subtype using tran- For instance, HCC tumors have been stratified based on the uti- scriptomics data, genome-scale metabolic networks and network lization of acetate (11). Analysis of HCC metabolism has also led topology/controllability analysis.
    [Show full text]
  • Alanine and Aspartate Aminotransferase and Glutamine-Cycling Pathway: Their Roles in Pathogenesis of Metabolic Syndrome
    Online Submissions: http://www.wjgnet.com/1007-9327office World J Gastroenterol 2012 August 7; 18(29): 3775-3781 [email protected] ISSN 1007-9327 (print) ISSN 2219-2840 (online) doi:10.3748/wjg.v18.i29.3775 © 2012 Baishideng. All rights reserved. FIELD OF VISION Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome Silvia Sookoian, Carlos J Pirola Silvia Sookoian, Department of Clinical and Molecular Hepa- factors such as obesity, insulin resistance (IR), high tology, Institute of Medical Research A Lanari-IDIM, Univer- blood pressure, and dyslipidemia were associated with sity of Buenos Aires-National Council of Scientific and Tech- several metabolites, including branched-chain amino nological Research (CONICET), Ciudad Autónoma de Buenos acids, other hydrophobic amino acids, tryptophan Aires 1427, Argentina breakdown products, and nucleotide metabolites. In Carlos J Pirola, Department of Molecular Genetics and Biol- addition, the authors found a significant association of ogy of Complex Diseases, Institute of Medical Research A IR traits with glutamine, glutamate and the glutamine- Lanari-IDIM, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Ciudad Au- to-glutamate ratio. These data provide new insight into tónoma de Buenos Aires 1427, Argentina the pathogenesis of MS-associated phenotypes and in- Author contributions: Sookoian S and Pirola CJ designed the troduce a crucial role of glutamine-cycling pathway as study, analyzed
    [Show full text]
  • Recombinant Production of Eight Human
    Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism Stefano Donini, Manuela Ferrari, Chiara Fedeli, Marco Faini, Ilaria Lamberto, Ada Serena Marletta, Lara Mellini, Michela Panini, Riccardo Percudani, Loredano Pollegioni, et al. To cite this version: Stefano Donini, Manuela Ferrari, Chiara Fedeli, Marco Faini, Ilaria Lamberto, et al.. Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involve- ment in glyoxylate metabolism. Biochemical Journal, Portland Press, 2009, 422 (2), pp.265-272. 10.1042/BJ20090748. hal-00479195 HAL Id: hal-00479195 https://hal.archives-ouvertes.fr/hal-00479195 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 23 Jun 2009 as manuscript BJ20090748 Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism. Stefano Donini *, Manuela Ferrari *, Chiara Fedeli *, Marco Faini *‡ , Ilaria Lamberto *, Ada Serena Marletta *, Lara Mellini *, Michela Panini *, Riccardo Percudani *, Loredano Pollegioni †, Laura Caldinelli †, Stefania Petrucco *1 and Alessio Peracchi *2 * Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy † The Protein Factory - Department of Biotechnology and Molecular Sciences, University of Insubria, 21100 Varese, Italy.
    [Show full text]
  • AGXT Gene Alanine--Glyoxylate and Serine--Pyruvate Aminotransferase
    AGXT gene alanine--glyoxylate and serine--pyruvate aminotransferase Normal Function The AGXT gene provides instructions for making an enzyme called serine-pyruvate aminotransferase. This enzyme is found in liver cells, specifically within cell structures called peroxisomes. These structures are important for several cellular activities, such as ridding the cell of toxic substances and helping to break down certain fats. In the peroxisome, serine-pyruvate aminotransferase converts a compound called glyoxylate to the protein building block (amino acid) glycine. Health Conditions Related to Genetic Changes Primary hyperoxaluria More than 175 mutations in the AGXT gene have been found to cause primary hyperoxaluria type 1. This condition is caused by the overproduction of a substance called oxalate. Excess amounts of this substance lead to kidney and bladder stones, which can begin anytime from childhood to early adulthood with kidney disease developing at any age. Deposition of oxalate in multiple other tissues throughout the body (systemic oxalosis) can cause additional health problems. Most of the AGXT gene mutations decrease or eliminate serine-pyruvate aminotransferase activity, which impairs the conversion of glyoxylate to glycine. Other mutations cause the enzyme to be misplaced in cells, transporting it to structures called mitochondria instead of to peroxisomes. While the enzyme in the mitochondria retains activity, it cannot access glyoxylate, which is in peroxisomes. All AGXT gene mutations result in the accumulation of glyoxylate, which is converted to oxalate instead of glycine. The oxalate is filtered through the kidneys and is either excreted in urine as a waste product or combines with calcium to form calcium oxalate, a hard compound that is the main component of kidney and bladder stones.
    [Show full text]
  • Mutational Analysis of AGXT in Two Chinese Families with Primary
    Li et al. BMC Nephrology 2014, 15:92 http://www.biomedcentral.com/1471-2369/15/92 RESEARCH ARTICLE Open Access Mutational analysis of AGXT in two Chinese families with primary hyperoxaluria type 1 Guo-min Li1, Hong Xu1*, Qian Shen1, Yi-nv Gong1, Xiao-yan Fang1, Li Sun1, Hai-mei Liu1 and Yu An2* Abstract Background: Primary hyperoxaluria type 1 is a rare autosomal recessive disease of glyoxylate metabolism caused by a defect in the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) that leads to hyperoxaluria, recurrent urolithiasis, and nephrocalcinosis. Methods: Two unrelated patients with recurrent urolithiasis, along with members of their families, exhibited mutations in the AGXT gene by PCR direct sequencing. Results: Two heterozygous mutations that predict truncated proteins, p.S81X and p.S275delinsRAfs, were identified in one patient. The p.S81X mutation is novel. Two heterozygous missense mutations, p.M1T and p.I202N, were detected in another patient but were not identified in her sibling. These four mutations were confirmed to be of paternal and maternal origin. Conclusions: These are the first cases of primary hyperoxaluria type 1 to be diagnosed by clinical manifestations and AGXT gene mutations in mainland China. The novel p.S81X and p.I202N mutations detected in our study extend the spectrum of known AGXT gene mutations. Keywords: AGXT gene, Chinese children, Mutational analysis, Novel mutation, Primary hyperoxaluria type 1 Background [5,7-9]. Excessive oxalate excretion is an indicator of Primary hyperoxaluria type 1 (PH1; MIM# 259900) is an this disease; however, the test is not specific for PH1 autosomal recessive disorder of glyoxylate metabolism, and may have misleading results because oxalate excretion leading to the overproduction of endogenous oxalate; may be reduced during renal failure [2,10,11].
    [Show full text]
  • Characterising the Role of a Putative Mammalian Aspartate Dehydrogenase In
    Characterising the Role of a Putative Mammalian Aspartate Dehydrogenase in Hepatic Lipogenesis and Secretion of Very Low Density Lipoproteins STEPHANIE ANN BONNEY Thesis submitted to the Imperial College of London For the degree of Doctor of Philosophy December 2009 MRC Genomic and Molecular Medicine Clinical Sciences Centre Imperial College School of Medicine Hammersmith Hospital, Du Cane Road London W12 ONN, UK. 1 i Acknowledgements I owe much gratitude to my Ph.D. supervisor, Professor Carol Shoulders for providing me the opportunity, support, advice, guidance and strength to undertake and complete a Ph.D. I would like to thank the many people who have significantly contributed to my studies and helped me along my way: Rocio Lale-Montes, Angela Whyte, Christopher Mann, Penny Ritchie, Abdul Hebbachi, Geoffrey Gibbons, Bethan Jones, Emma Jones and Max Salm. I am indebted to my many colleagues for providing a stimulating and fun environment in which to learn and grow. I am especially grateful to Helen Ringham, Claire Hutchison, Ruth Newton, Margaret Town, Paul Williams, Muddassar Mirza, Stuart Horswell and Lee Fryer. I wish to thank my family and friends for helping me get through the difficult times, and for all the emotional support, comradery, entertainment, and caring they provided. Especially to my mother Sylvia Bonney, who provided consistent support and encouragement through-out the many years of my Ph.D. To my brothers Craig, John and Sean, my sister in-laws Tracey, Francine and Suey and to all my nieces and nephews thank you for being there and supporting me through out the years. To all my friends, especially Denise Read, Victoria Westhead, Julia Barnett and Sophie Voline who have all been so supporting and caring through out the whole experience.
    [Show full text]