Gravity and Signature Change

Total Page:16

File Type:pdf, Size:1020Kb

Gravity and Signature Change View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server gr-qc/9610063 30 September 1996 GRAVITY AND SIGNATURE CHANGE 1 Tevian Dray Dept. of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA 5005, AUSTRALIA School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK Department of Mathematics, Oregon State University, Corval lis, OR 97331, USA [email protected] George Ellis Department of Applied Mathematics, University of Cape Town, Rondebosch 7700, SOUTH AFRICA [email protected] 2 Charles Hellaby School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK Department of Applied Mathematics, University of Cape Town, Rondebosch 7700, SOUTH AFRICA [email protected] 1 Corinne A. Manogue Dept. of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA 5005, AUSTRALIA School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK Department of Physics, Oregon State University, Corval lis, OR 97331, USA [email protected] du ABSTRACT The use of prop er \time" to describ e classical \spacetimes" which con- tain b oth Euclidean and Lorentzian regions p ermits the intro duction of smo oth (generalized) orthonormal frames. This remarkable fact p ermits one to describ e b oth a variational treatment of Einstein's equations and distribution theory using straightforward generalizations of the standard treatments for constant signature. 1 Permanent address is Oregon State University. 2 Permanent address is University of Cap e Town. - 2 - 1. INTRODUCTION 3 A signature-changing spacetime is a manifold which contains b oth Euclidean and Lorentzian regions. Signature-changing metrics must be either degenerate (vanishing de- terminant) or discontinuous, but Einstein's equations implicitly assume that the metric is 4 nondegenerate and at least continuous. Thus, in the presence of signature change, it is not obvious what \the" eld equations should be. For discontinuous signature-changing metrics, one can derive such equations from a suitable variational principle [2]. This turns out to follow from the existence in this case of a natural generalization of the notion of orthonormal frame. The standard theory of tensor distributions, as well as the usual variation of the Einstein-Hilb ert action, can b oth be expressed in terms of orthonormal frames, and thus generalize in a straightforward manner to these mo dels. No such derivation is known for continuous signature-changing metrics. Our key p oint is that although signature change requires the metric to exhibit some sort of degeneracy, there is in the discontinuous case a more fundamental eld, namely the (generalized) orthonormal frame, which remains smo oth. We intro duce here two simple examples in order to establish our terminology. A typical continuous signature-changing metric is 2 2 2 2 ds = tdt + a(t) dx (1) whereas a typical discontinuous signature-changing metric is 2 2 2 2 ds = sgn( ) d + a( ) dx (2) Away from the surface of signature change at = ft = 0g = f = 0g, these metrics are related by a smo oth co ordinate transformation, with denoting prop er \time" away p from . However, since d = jtj dt, the notions of smo oth tensors asso ciated with these co ordinates are di erent at , corresp onding to di erent di erentiable structures. We argue here in favor of the discontinuous metric approach, b oth physically and mathematically. Physically, b ecause of the fundamental role played by prop er time. Math- ematically, b ecause of the geometric invariance of the unit normal to the surface of signa- ture change. The resulting (generalized) orthonormal frames provide a clear path leading to a straightforward generalization of b oth Einstein's equations and the theory of tensor distributions. 2. PHYSICS A standard to ol in the description of physical pro cesses is the intro duction of an orthonormal frame. Physical quantities can b e expressed in terms of tensor comp onents in 3 Due to the frequent misuse of the word Riemannian to describ e manifolds with metrics of any signature, we instead use Euclidean to describ e manifolds with a p ositive-de nite metric and Lorentzian for the usual signature of relativity. This is not meant to imply atness in the former case, nor curvature in the latter. 4 This can be weakened [1] to allow lo cally integrable metrics admitting a square- integrable weak derivative. Discontinuous metrics do not satisfy this condition. - 3 - an orthonormal frame, corresp onding to measurements using prop er distance and prop er time. For example, when studying a scalar eld on signature-changing backgrounds such as (1) or (2), it is imp ortant to know the value of the canonical momentum at the b oundary, which is essentially the derivative of the eld with resp ect to prop er time. Furthermore, the well-p osedness of the initial-value problem in the Lorentzian region tells us that the canonical momentum will b e well-b ehaved at if it is well-b ehaved at early times. Continuous signature-changing metrics necessarily havevanishing determinant at the surface of signature change, which prevents one from de ning an orthonormal frame there. The situation is di erent for signature-changing metrics such that prop er \time" is an ad- missible co ordinate. Although the metric is necessarily discontinuous, 1-sided orthonormal frames can be smo othly joined at . Remarkably, the resulting generalized orthonormal frame is smo oth, and is as orthonormal as p ossible. In fact, requiring not only that the 1-sided induced metrics on , but also the 1-sided orthonormal frames, should agree at implies that either the full metric is continuous (and nondegenerate) or that the signature changes. Such frames can b e used to derive Einstein's eld equations from the Einstein-Hilb ert action, obtained for constant signature by integrating the Lagrangian density a b c ^ e ^ e (3) L = g R b ac where c a a a (4) ^ ! + ! = d! R b c b b are the curvature 2-forms and denotes the Ho dge dual. Varying this action with resp ect to the metric-compatible connection ! leads to the further condition that ! b e torsion-free, while varying with resp ect to the (arbitrary) frame e leads to Einstein's equations. In the 5 presence of a b oundary, one obtains (in vacuum) the Darmois junction condition [3], namely that the extrinsic curvature of the b oundary must be the same as seen from each side. (In general, one obtains the usual Lanczos equation [4] relating the stress tensor of the b oundary to the discontinuity in the extrinsic curvature.) The ab ove derivation of Einstein's equations requires that the connection 1-forms admit (1-sided) limits to the b oundary. For continuous signature-changing metrics, the connection 1-forms typically blow up at the b oundary, but for discontinuous signature- 6 changing metrics in a (1-sided) orthonormal frame they don't. It thus seems reasonable to prop ose that \Einstein's equations" for signature-changing manifolds should b e obtained 7 with resp ect to the (generalized) byvarying the (piecewise extension of ) the ab ove action 5 A surface term (the trace of the extrinsic curvature) must be added to the Einstein- Hilb ert action in the presence of b oundaries; this has nothing to do with signature change. 6 This will be the case if each 1-sided manifold-with-b oundary has a well-de ned con- nection, as for instance when glueing manifolds together or, on the Lorentzian side, when starting from well-p osed initial data. 7 There are a numb er of relative sign ambiguities b etween regions of di erent signature, so that the relative sign in the action | and hence in the b oundary conditions | can be chosen arbitrarily. - 4 - orthonormal frame. As exp ected, one obtains Einstein's equations separately in the two 8 regions together with the Darmois junction conditions at the b oundary [2]. 3. MATHEMATICS Theories involving internal b oundaries are typically formulated using distribution the- ory. The standard theory of hyp ersurface distributions is based on a nondegenerate volume element, which is usually taken to be the metric volume element if available. It is a re- markable prop erty of signature-changing spacetimes for which is an admissible co ordinate that, even though the metric is discontinuous, the (continuous extension of ) the metric volume element is smo oth. This of course follows immediately from the smo othness of the generalized orthonormal frame, from which the volume element can b e constructed. Thus, standard distribution theory can be used with no further ado [6]. Smo oth signature-changing metrics, on the other hand, have metric volume elements which vanish at . In fact, the combined requirements that the metric volume element be used where p ossible and that smo oth tensors be distributions result in this case in a theory [6] in which the Dirac delta distribution is identically zero! To illustrate these results, consider the following informal example. Consider rst the discontinuous signature-changing metric (2) with metric volume element ! = d ^ dx (5) de ned initially away from = 0, then continuously extended. Let V = V @ b e a smo oth vector eld, and let = d = ( ) d (6) be the standard hyp ersurface distribution asso ciated with = 0, namely the derivative of the Heaviside distribution . Then Z Z h ;V i = V ()! = V dx (7) M t=0 Now rep eat the ab ove construction for the smo oth signature-changing metric (1) with metric volume element p !^ = jtj dt ^ dx (8) again de ned initially away from t = 0, then continuously extended.
Recommended publications
  • Emergent Spacetimes
    Emergent spacetimes Silke Christine Edith Weinfurtner Department of Mathematics, Statistics and Computer Science — Te Kura Tatau arXiv:0711.4416v1 [gr-qc] 28 Nov 2007 Thesis submitted for the degree of Doctor of Philosophy at the Victoria University of Wellington. In Memory of Johann Weinfurtner Abstract In this thesis we discuss the possibility that spacetime geometry may be an emergent phenomenon. This idea has been motivated by the Analogue Gravity programme. An “effective gravitational field” dominates the kinematics of small perturbations in an Analogue Model. In these models there is no obvious connection between the “gravitational” field tensor and the Einstein equations, as the emergent spacetime geometry arises as a consequence of linearising around some classical field. After a brief survey of the most relevant literature on this topic, we present our contributions to the field. First, we show that the spacetime geometry on the equatorial slice through a rotating Kerr black hole is formally equivalent to the geometry felt by phonons entrained in a rotating fluid vortex. The most general acoustic geometry is compatible with the fluid dynamic equations in a collapsing/ ex- panding perfect-fluid line vortex. We demonstrate that there is a suitable choice of coordinates on the equatorial slice through a Kerr black hole that puts it into this vortex form; though it is not possible to put the entire Kerr spacetime into perfect-fluid “acoustic” form. We then discuss an analogue spacetime based on the propagation of excitations in a 2-component Bose–Einstein condensate. This analogue spacetime has a very rich and complex structure, which permits us to provide a mass-generating mechanism for the quasi-particle excitations.
    [Show full text]
  • Arxiv:0911.2255V2 [Math.RA] 25 Feb 2010 Octonionic Cayley Spinors and E6
    Octonionic Cayley Spinors and E6 Tevian Dray Department of Mathematics, Oregon State University, Corvallis, OR 97331 [email protected] Corinne A. Manogue Department of Physics, Oregon State University, Corvallis, OR 97331 [email protected] February 14, 2010 Abstract Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group E6, and of its subgroups. We are therefore led to a description of E6 in terms of 3 × 3 octonionic matrices, generalizing previous results in the 2 × 2 case. Our treatment naturally includes a description of several important subgroups of E6, notably G2, F4, and (the double cover of) SO(9, 1). An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested. 1 Introduction In previous work [10, 5], we used a formalism involving 2 × 2 octonionic matrices to describe the Lorentz group in 10 spacetime dimensions, and then applied this formalism to the Dirac equation. We developed a mechanism for reducing 10 dimensions to 4 without compacti- fication, thus reducing the 10-dimensional massless Dirac equation to a unified treatment arXiv:0911.2255v2 [math.RA] 25 Feb 2010 of massive and massless fermions in 4 dimensions. This description involves both vectors (momentum) and spinors (solutions of the Dirac equation), which we here combine into a single, 3-component object. This leads to a representation of the Dirac equation in terms of 3 × 3 octonionic matrices, revealing a deep connection with the exceptional Lie group E6.
    [Show full text]
  • A Contextual Analysis of the Early Work of Andrzej Trautman and Ivor
    A contextual analysis of the early work of Andrzej Trautman and Ivor Robinson on equations of motion and gravitational radiation Donald Salisbury1,2 1Austin College, 900 North Grand Ave, Sherman, Texas 75090, USA 2Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany October 10, 2019 Abstract In a series of papers published in the course of his dissertation work in the mid 1950’s, Andrzej Trautman drew upon the slow motion approximation developed by his advisor Infeld, the general covariance based strong conservation laws enunciated by Bergmann and Goldberg, the Riemann tensor attributes explored by Goldberg and related geodesic deviation exploited by Pirani, the permissible metric discontinuities identified by Lich- nerowicz, O’Brien and Synge, and finally Petrov’s classification of vacuum spacetimes. With several significant additions he produced a comprehensive overview of the state of research in equations of motion and gravitational waves that was presented in a widely cited series of lectures at King’s College, London, in 1958. Fundamental new contribu- tions were the formulation of boundary conditions representing outgoing gravitational radiation the deduction of its Petrov type, a covariant expression for null wave fronts, and a derivation of the correct mass loss formula due to radiation emission. Ivor Robin- son had already in 1956 developed a bi-vector based technique that had resulted in his rediscovery of exact plane gravitational wave solutions of Einstein’s equations. He was the first to characterize shear-free null geodesic congruences. He and Trautman met in London in 1958, and there resulted a long-term collaboration whose initial fruits were the Robinson-Trautman metric, examples of which were exact spherical gravitational waves.
    [Show full text]
  • Arxiv:Gr-Qc/9610064V1 26 Oct 1996
    gr-qc/9610064 30 January 1996 EINSTEIN’S EQUATIONS IN THE PRESENCE OF SIGNATURE CHANGE Tevian Dray Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA ∗ Dept. of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA 5005, AUSTRALIA School of Physics and Chemistry, Lancaster University Lancaster LA1 4YB, UK [email protected] PACS: 04.20.Cv, 11.30.-j, 02.40.Hw We discuss Einstein’s field equations in the presence of signature change using variational meth- ods, obtaining a generalization of the Lanczos equation relating the distributional term in the stress tensor to the discontinuity of the extrinsic curvature. In particular, there is no distributional term in the stress tensor, and hence no surface layer, precisely when the extrinsic curvature is continuous, in agreement with the standard result for constant signature. I. INTRODUCTION Classical cosmological models containing an initial region of Euclidean signature joined to a final region with the usual Lorentzian signature were introduced by Ellis et al. [1,2]. A basic feature of this work is the use of the Darmois junction conditions at the surface where the signature changes. This assumption has been questioned by Hayward [3], who prefers to assume the stronger conditions appropriate for quantum cosmology. We argue here in favor of the Darmois approach by deriving these junction conditions from the Einstein-Hilbert action. What are Einstein’s equations in the presence of signature change? Formal computation quickly goes astray: A signature-changing metric is necessarily degenerate at the hypersurface of signature change. The Geroch-Traschen conditions [4] for the existence of a distributional curvature tensor thus fail to be satisfied, and it is not clear whether a preferred connection exists.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Name Tevian DRAY Birthdate 17 March 1956 Birthplace Washington, DC, USA Citizenship USA Email [email protected] Home Page http://www.math.oregonstate.edu/~tevian EDUCATION February 1976 B.S. in Mathematics, Massachusetts Institute of Technology, Cam- bridge, MA, USA December 1977 M.A. in Mathematics, University of California, Berkeley, CA, USA December 1981 Ph.D. in Mathematics, University of California, Berkeley, CA, USA PROFESSIONAL RECORD 1/88 – present Department of Mathematics, Oregon State University, Corvallis, OR, USA. Assistant Professor 1/88 – 8/90; Associate Professor 9/90 – 8/97; Professor 9/97 – present 2/10 – 4/10 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, USA. Visitor 9/09 – 10/09 Department of Physics, Utah State University, Logan, UT, USA. Vis- iting Professor of Physics 8/02 – 12/02 Grinnell College, Grinnell, IA, USA. Robert N. Noyce ’49 Visiting Pro- fessor in the Physical Sciences, Math, and Computer Science 9/01 – 6/02 Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA, USA. Hutchcroft Visiting Professor of Mathematics 2/95 – 8/95 Department of Physics and Mathematical Physics, University of Ade- laide, Adelaide, AUSTRALIA. Fulbright Senior Scholar 8/94 – 1/95 School of Physics and Chemistry, Lancaster University, Lancaster, ENGLAND. Visiting Research Fellow 1/91 – 6/91 Mathematical Sciences Research Institute (MSRI), Berkeley, CA, USA. Senior Member 10/87 – 12/87 Theoretical Astrophysics Group, Tata Institute of Fundamental Re- search (TIFR), Bombay, INDIA. Visiting Professor 7/87 – 9/87 Institute of Mathematical Sciences, Madras, INDIA. Visiting Scientist 1/86 – 6/87 Department of Mathematics, University of York, York, ENGLAND.
    [Show full text]
  • Left-Right Symmetric Fermions and Sterile Neutrinos from Complex Split Biquaternions and Bioctonions
    Left-Right symmetric fermions and sterile neutrinos from complex split biquaternions and bioctonions Vatsalya Vaibhava1 and Tejinder P. Singhb2 aIndian Institute of Technology Kanpur, 208016, India bTata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India [email protected], [email protected] ABSTRACT In this article we investigate the application of complex split biquaternions and bioctonions to the standard model. We show that the Clifford algebras Cl(3) and Cl(7) can be used for making left- right symmetric fermions. Hence we incorporate right-handed neutrinos in the division algebras based approach to the standard model. The right-handed neutrinos, also known as sterile neutrinos, are a potential dark-matter candidate. We discuss the left-right symmetric fermions and their phenomenology using the division algebra approach. We describe the gauge groups associated with the left-right symmetric model and prospects for unification including gravity, through division algebras. We investigate the possibility of obtaining three generations of fermions and charge/mass ratios through the exceptional Jordan algebra J3(O) and the exceptional groups F4 and E6. I. INTRODUCTION The quaternions were initially introduced by Hamilton to explain rotations in three dimensions, and they form a non-commutative division algebra. To begin with, the use of quaternions and arXiv:2108.01858v1 [hep-ph] 4 Aug 2021 octonions (the next division algebra in the series) was very limited in physics partly because of their complicated multiplication rules and also because vector algebra was able to explain rotations in three-space, as an alternative to quaternions. In [1], Gunaydin and Gursey proposed the use of octonions to understand quarks.
    [Show full text]
  • Computer Methods in General Relativity: Algebraic Computing
    Paperpresented at the 13th Int. Conf on General Relativity and Gravitation 381 Cordoba, Argentina, 1992: Part 2, Workshop Summaries Computer methods in general relativity: algebraic computing Marcelo E Araujo, Departamento de Matematica, Universidade de Brasilia, 70919 Brasilia DF, BRAZIL, E-mail: [email protected]. Tevian Dray, Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA, E-mail: tevian©math.orst.edu. James E F Skea, School of Mathematical Sciences, Queen Mary and Westfield College, London, E1 4N8, UK, E-mail: jimsk©cbpfsul.cat.cbpf.br. Andreas Koutras, School of Mathematical Sciences, Queen Mary and Westfield College, LONDON, E1 4N5, UK, E-mail: andreas©maths.qmw.ac.uk. Andrzej Krasinski, Polish Academy of Sciences, Bartycka 18, 00 716 Warszawa, Poland, E-mail: [email protected]. David Hobill, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada, E—mail: h0bill©acs.ucalgary.edu. R G McLenaghan, University of Waterloo, Ontario N2L 3G1, Canada, E—mail: rgm- [email protected]. Steven M Christensen, MathSolutions, lnc., PO. Box 16175, Chapel Hill, NC 27516 USA, Email: steve©physics.unc.edu. o The first presentation in this session was Finding isometry groups in theory and practice by Araujo, Dray, and Skea. They summarized their work as follows: Karlhede & MacCallum [1] gave a procedure for determining the Lie algebra of the isometry group of an arbitrary pseudo-Riemannian manifold, which they intended to im- plement using the symbolic manipulation package SHEEP but never did. We have recently finished making this procedure explicit by giving an algorithm suitable for implemen- tation on a computer [2].
    [Show full text]
  • Division Algebras, Supersymmetry and Higher Gauge Theory
    UNIVERSITY OF CALIFORNIA RIVERSIDE Division Algebras, Supersymmetry and Higher Gauge Theory A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics by John Gmerek Huerta June 2011 arXiv:1106.3385v1 [math-ph] 17 Jun 2011 Dissertation Committee: Professor John Baez, Chairperson Professor Vyjayanthi Chari Professor Stefano Vidussi Copyright by John Gmerek Huerta 2011 Acknowledgements A dissertation is the capstone to a doctoral program, and the acknowledgements provide a use- ful place to thank the countless people who have helped out along the way, both personally and professionally. First, of course, I thank my advisor, John Baez. It is hard to imagine a better advisor, and no one deserves more credit for my mathematical and professional growth during this program. “Thanks” does not seem sufficient, but it is all I have to give. Also deserving special mention is John’s collaborator, James Dolan. I am convinced there is no subject in mathematics for which Jim does not have some deep insight, and I thank him for sharing a few of these insights with me. Together, John and Jim are an unparalleled team: there are no two better people with whom to talk about mathematics, and no two people more awake to the joy of mathematics. I would also like to thank Geoffrey Dixon, Tevian Dray, Robert Helling, Corinne Manogue, Chris Rogers, Hisham Sati, James Stasheff, and Riccardo Nicoletti for helpful conversations and correspondence. I especially thank Urs Schreiber for many discussions of higher gauge theory and L1-superalgebras, smooth 1-groups, and supergeometry.
    [Show full text]
  • An Abstract of the Dissertation Of
    AN ABSTRACT OF THE DISSERTATION OF Gregory Mulder for the degree of Doctor of Philosophy in Physics presented on February 26, 2021. Title: Coordinatization Activated: How Students Understand and Apply Coordinate- Independent Integral Equations to Physics Situations Abstract approved: ______________________________________________________ Elizabeth E. Gire Physics problems that require integration, such as finding the center of mass of an object or finding the electric field from a continuous distribution of charge, are one type of problem that is difficult for introductory physics students to solve. These problems require students to define a coordinate system in a physical situation in order to apply coordinate-independent equations. This process of converting coordinate-independent quantities into coordinate-dependent quantities I call coordinatization. In this dissertation, I explore how junior-level physics students coordinatize physics problems that involve integrating vectors. Using a resources theoretical perspective, I perform a qualitative thematic analysis on student written work and clinical problem-solving interviews. I identify 32 types of acts of coordinatization and organize these into 5 categories: drawing an axis, manipulating the infinitesimal, dealing with the vector nature of the integrand, including an infinitesimal in a sketch, and indicating limits of integration. Then, I examine a co- occurrence between indicating an infinitesimal and manipulating the infinitesimal. I also identify symbolic forms that students
    [Show full text]
  • Experts' Understanding of Partial Derivatives Using the Partial
    Experts' understanding of partial derivatives using the Partial Derivative Machine David Roundy, Allison Dorko, Tevian Dray, Corinne A. Manogue, and Eric Weber Oregon State University, Corvallis∗ Partial derivatives are used in a variety of different ways within physics. Most notably, thermody- namics uses partial derivatives in ways that students often find confusing. As part of a collaboration with mathematics faculty, we are at the beginning of a study of the teaching of partial derivatives, a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. As a part of this project, we have performed a pilot study of expert understanding of partial derivatives across three disciplines: physics, engineering and mathematics. Our interviews made use of the Partial Derivative Machine (PDM), which is a mechanical system featuring four observable and controllable properties, of which any two are independent. Using the PDM, we probed expert understanding of partial derivatives in an experimental context in which there is not a known functional form. Through these three interviews, we found that the mathematicians exhibited a striking difference in their understanding of derivatives relative to the other groups. The physicists and engineers were quick to use measurements to find a numeric approximation for a derivative. In contrast, the mathematicians repeatedly returned to speculation as to the functional form, and although they were comfortable drawing qualitative conclusions about the system from measurements, were reluctant to approximate the derivative through measurement. This pilot study led us to further questions. On a theoretical front, we found that existing frameworks for the con- cept of derivative are inadequate when applied to numerical approximation, and intend to address this with an expansion of the framework of Zandieh (2000).
    [Show full text]
  • Program of the Sessions Atlanta, Georgia, January 4–7, 2017
    Program of the Sessions Atlanta, Georgia, January 4–7, 2017 3:15PM Concentration in first-passage Monday, January 2 (4) percolation. AMS Short Course on Random Growth Philippe Sosoe,HarvardUniversity (1125-60-3157) Models, Part I NSF-EHR Grant Proposal Writing Workshop 9:00 AM –4:30PM M301, Marquis Level, Marriott Marquis 3:00 PM –6:00PM A707, Atrium Level, Marriott Marquis Organizers: Michael Damron,Georgia Institute of Technology AMS Short Course Reception Firas Rassoul-Agha, University of Utah 4:30 PM –5:30PM M302, Marquis Timo Sepp¨al¨ainen, Level, Marriott Marquis University of Wisconsin at Madison 8:00AM Registration 9:00AM Introduction to random growth models, I. Tuesday, January 3 (1) Michael Damron, Georgia Institute of Technology (1125-60-3158) AMS Department Chairs Workshop 10:15AM Break 8:00 AM –6:30PM M103, M104 & M105, 10:45AM Introduction to random growth models, Marquis Level, Marriott Marquis (2) II. Michael Damron, Georgia Institute of Presenters: Malcolm Adams,University Technology of Georgia Matthew Ando, NOON Break University of Illinois at 1:30PM Infinite geodesics, asymptotic directions, Urbana-Champaign (3) and Busemann functions. Krista Maxson,Universityof Jack Hanson, The City College of New Science & Arts of Oklahoma York (1125-60-3159) Douglas Mupasiri, 3:15PM Break University of Northern Iowa The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 38, Issue 1 of Abstracts is ten minutes. The time limit for each MAA contributed of papers presented to the American Mathematical Society, paper varies. In the Special Sessions the time limit varies ordered according to the numbers in parentheses following from session to session and within sessions.
    [Show full text]
  • Paul Davies; Oxford University Press 2006)
    Curriculum Vitae Paul C.W. Davies Beyond: Center for Fundamental Concepts in Science Arizona State University http://beyond.asu.edu P.O. Box 871504, Tempe, AZ 85287-1504 (480) 727-0774 Fax: 480 965 7954 [email protected] Nationality: British & Australian Education/degrees BSc First Class in Physics, University College London, 1967 Ph.D, Physics Department, University College London, 1970 DSc honoris causa, Macquarie University, Sydney (2006) DSc honoris causa,, Chapman University, California (2009) Professional Appointments 2006- Director, Beyond: Center for Fundamental Concepts in Science, Co-Director ASU Cosmology Initiative, College Professor, Arizona State University 2001 - 2006 Professor of Natural Philosophy, Macquarie University 1998 - Visiting Professor, Department of Physics, Imperial College London 1998 - Adjunct Professor, Department of Physics, University of Queensland 1993 - 1997 Professor of Natural Philosophy, Department of Physics, The University of Adelaide 1990 - 1993 Professor of Mathematical Physics, The University of Adelaide 1980 - 1990 Professor of Theoretical Physics, University of Newcastle upon Tyne 1972 - 1980 Lecturer in Mathematics, King's College, University of London 1970 - 1972 Research Fellow, Institute of Theoretical Astronomy, University of Cambridge Professional organizations Fellow, UK Institute of Physics Chartered Physicist (CPhys), UK Institute of Physics Fellow, Australian Institute of Physics Fellow, World Economic Forum Fellow, Royal Literary Society Honorary Fellow, Indian Astronomical Society
    [Show full text]