A Biomechanical Analysis of Ape and Human Thoracic Vertebrae
Total Page:16
File Type:pdf, Size:1020Kb
A BIOMECHANICAL ANALYSIS OF APE AND HUMAN THORACIC VERTEBRAE USING QUANTITATIVE COMPUTED TOMOGRAPHY BASED FINITE ELEMENT MODELS By DAVID ARTHUR LOOMIS Submitted in partial fulfillment of the requirements For the degree of Masters of Science Thesis Adviser: Christopher J. Hernandez Ph.D. Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables.................................................................................................................... iii List of Figures .................................................................................................................. iv Acknowledgements ........................................................................................................... v Abstract ............................................................................................................................ vi Introduction ...................................................................................................................... 1 BONE COMPOSITION AND STRUCTURE ............................................................................................................... 1 CLINICAL FRACTURE MORPHOLOGY .................................................................................................................. 3 BIOMECHANICAL MODELING ........................................................................................................................... 4 HABITUAL LOADING ....................................................................................................................................... 5 PREVIOUS WORK .......................................................................................................................................... 5 OBJECTIVES AND SPECIFIC AIMS ....................................................................................................................... 6 Methods ............................................................................................................................. 7 SPECIMEN DESCRIPTION ................................................................................................................................. 7 QCT SCANNING ............................................................................................................................................ 8 IMAGE PROCESSING ....................................................................................................................................... 8 BIOMECHANICAL ANALYSIS .............................................................................................................................. 9 BONE LOSS SIMULATIONS ............................................................................................................................. 13 STATISTICAL ANALYSIS .................................................................................................................................. 16 Results ............................................................................................................................. 17 Discussion ........................................................................................................................ 24 Appendices ...................................................................................................................... 29 APPENDIX I: TABLE OF SPECIMEN IDENTIFICATION, SEX, AND BODY MASS ............................................................. 29 APPENDIX II: ELEMENT INFORMATION, AND ASPECT RATIO COMPARISON FOR FINITE ELEMENT MODELING AMONG APES AND HUMANS ............................................................................................................................................ 30 APPENDIX III: CONVERGENCE STUDY FOR NUMBER OF MATERIALS USED IN FINITE ELEMENT MODELS ........................ 31 Works Cited .................................................................................................................... 32 ii List of Tables Table 1. Linear and log-transformed regression models of significant correlations between finite element strength (kN), bone mineral content (g), and body mass (kg) are shown (reduced major axis, RMA, coefficients are also shown)……………………….…….....…..18 Table 2. The results of ANCOVA analyses to evaluate differences among and between species are shown. Multiple comparisons were performed using the Holm post-hoc test.....20 iii List of Figures Figure 1: A thoracic vertebrae (T8) is shown with anatomical parts indicated. .................................................... 3 Figure 2: Finite element model showing the distribution of elastic modulus in a vertebral body, application of PMMA on the endplates and loading of the vertebral body on the superior surface. ........................................... 11 Figure 3: The relationship between porosity (p), and specific surface as determined by Martin is shown [51]. 15 Figure 4: Relationship between specific surface, porosity, and density used in the surfaced-based bone loss model. Solid cubes portray a single density value representative of bone porosity in a given voxel. ................. 16 Figure 5: Distribution of elastic modulus values in a chimpanzee vertebrae visualized using ABAQUS. ......... 17 Figure 6: Distribution of elastic modulus values and cross-section view showing von Mises stresses. .............. 17 Figure 7: Vertebral compressive strength determined through finite element modeling (SFE) is positively correlated with body mass. No significant differences in this regression line were observed among species, but humans showed reduced bone strength relative to body mass as compared to apes (p < 0.01). ........................... 18 Figure 8: Vertebral compressive strength determined through finite element modeling (SFE) is positively correlated with bone mineral content (g). After accounting for bone mineral content, vertebral compressive strength in humans is less than what would be expected in apes (p < 0.01) as indicated by the different regression lines. .................................................................................................................................................... 19 Figure 9: Bone mineral content (g) linearly increases with body mass for all species (kg). No significant differences in bone mineral content were observed among species were after accounting for body mass. .......... 20 Figure 10: The reduction in finite element strength associated with a 20% reduction in bone mineral content is shown for the surface-based and uniform bone loss simulation methods. ............................................................ 21 Figure 11: The ratio of finite element strength to body mass was significantly lower in humans as compared to apes (p<0.01). ....................................................................................................................................................... 22 Figure 12: Volumetric bone mineral density (vBMD) compared to finite element strength (SFE). .................... 23 Figure 13: Relationship between compressive strength determined using composite beam theory (Saxial) and strength determined through finite element modeling (FE Strength). Finite element strength linearly increases with axial rigidity ( r2 = 0.98). .............................................................................................................................. 23 Figure 14: Faces containing species labels are the “In-Plane” of BMD scans. Orangutan (FMNH) were scanned with a different slice thickness, at Rush Medical Center in Chicago, IL (n = 2). ................................... 30 Figure 15: Finite element result convergence was analyzed on twelve samples using six different numbers of bin materials. The data showed convergence of finite element compressive strength when the number of materials used for binning exceeds 50 materials per vertebral body. ................................................................... 31 iv Acknowledgements The work herein would not be possible without the combined effort of many individuals and collaborative institutions. The author would first like to thank the Case Alumni Association for their support through a BS-MS Scholarship. Also, the author would like to thank Meghan Cotter, Drew Schifle, and CJ Slyfield for their technical assistance. Finally, the author would like to thank his parents Jim and Betty Loomis, twin brother Mark Loomis, and adviser Christopher Hernandez Ph.D. for their continued support, guidance, and inspiration. v A Biomechanical Analysis of Ape and Human Thoracic Vertebrae Using Quantitative Computed Tomography Based Finite Element Models Abstract By DAVID ARTHUR LOOMIS Spontaneous vertebral fractures are common among humans, but not observed in apes. Differences in bone