1 Spatialised Audio in a Custom-Built OpenGL-based Ear Training Virtual Environment Karsten Pedersen, Vedad Hulusic, Panos Amelidis, Tim Slattery Bournemouth University fpedersenk, vhulusic, pamelidis,
[email protected] Abstract—Interval recognition is an important part of ear the PLATO mainframe to provide programmed instruction training - the key aspect of music education. Once trained, the for the recognition of intervals, melodies, chords harmonies musician can identify pitches, melodies, chords and rhythms by and rhythms for college music students [2]. EarMaster [4] listening to music segments. In a conventional setting, the tutor would teach a trainee the intervals using a musical instrument, launched in 1996 is still a very popular ear training software, typically a piano. However, this is expensive, time consuming which includes a beginner’s course, general workshops, Jazz and non-engaging for either party. With the emergence of new workshops and customised exercises. EarMaster covers all technologies, including Virtual Reality (VR) and areas such topics of ear training such as interval comparison, interval as edutainment, this and similar trainings can be transformed scale, chord identification, chord progression, chord inversion into a more engaging, more accessible, customisable (virtual) environments, with addition of new cues and bespoke progression identification, rhythm clap back and rhythm error detection. settings. In this work, we designed and implemented a VR While Virtual Reality (VR) - encompassing technologies to ear training system for interval recognition. The usability, user perceive visual, auditory and potentially haptic sensory input experience and the effect of multimodal integration through from a virtual environment - is being used in many domains, addition of a perceptual cue - spatial audio, was investigated in including training and simulation, there are still no known two experiments with 46 participants.