An Assessment of Latest Cretaceous Pycnodonte Vesicularis (Lamarck, 1806) Shells As Records for Palaeoseasonality: a Multi-Proxy Investigation

Total Page:16

File Type:pdf, Size:1020Kb

An Assessment of Latest Cretaceous Pycnodonte Vesicularis (Lamarck, 1806) Shells As Records for Palaeoseasonality: a Multi-Proxy Investigation Clim. Past, 14, 725–749, 2018 https://doi.org/10.5194/cp-14-725-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation Niels J. de Winter1,*, Johan Vellekoop1,2,*, Robin Vorsselmans2, Asefeh Golreihan2, Jeroen Soete2, Sierra V. Petersen3, Kyle W. Meyer3, Silvio Casadio4, Robert P. Speijer2, and Philippe Claeys1 1Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium 2Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium 3Earth and Environmental Sciences Department, University of Michigan, Ann Arbor, Michigan, USA 4Escuela de Geología, Paleontología y Enseñanza de las Ciencias, Universidad Nacional de Río Negro, CONICET, General Roca, Argentina *These authors contributed equally to this work. Correspondence: Niels J. de Winter ([email protected]) Received: 26 September 2017 – Discussion started: 11 October 2017 Revised: 4 April 2018 – Accepted: 21 May 2018 – Published: 8 June 2018 Abstract. In order to assess the potential of the honey- tiate between well-preserved and diagenetically altered por- comb oyster Pycnodonte vesicularis for the reconstruction tions of the shells and provides an improved methodology for of palaeoseasonality, several specimens recovered from late reconstructing palaeoenvironmental conditions in deep time. Maastrichtian strata in the Neuquén Basin (Argentina) were While establishing a chronology for these shells was compli- subject to a multi-proxy investigation, involving scanning cated by growth cessations and diagenesis, cyclicity in trace techniques and trace element and isotopic analysis. Com- elements and stable isotopes allowed for a tentative interpre- bined CT scanning and light microscopy reveals two cal- tation of the seasonal cycle in late Maastrichtian palaeoen- cite microstructures in P. vesicularis shells (vesicular and vironment of the Neuquén Basin. Attempts to independently foliated calcite). Micro-XRF analysis and cathodolumines- verify the seasonality in sea water temperature by Mg = Ca cence microscopy show that reducing pore fluids were able ratios of shell calcite are hampered by significant uncertainty to migrate through the vesicular portions of the shells (aided due to the lack of proper transfer functions for pycnodontein by bore holes) and cause recrystallization of the vesicular oysters. Future studies of fossil ostreid bivalves should target calcite. This renders the vesicular portions not suitable for dense, foliated calcite rather than sampling bulk or vesicu- palaeoenvironmental reconstruction. In contrast, stable iso- lar calcite. Successful application of clumped isotope ther- tope and trace element compositions show that the orig- mometry on fossil bivalve calcite in this study indicates that inal chemical composition of the foliated calcite is well- temperature seasonality in fossil ostreid bivalves may be con- preserved and can be used for the reconstruction of palaeoen- strained by the sequential analysis of well-preserved foliated vironmental conditions. Stable oxygen and clumped isotope calcite samples using this method. thermometry on carbonate from the dense hinge of the shell ◦ H yield sea water temperatures of 11 C, while previous TEX86 palaeothermometry yielded much higher temperatures. The 1 Introduction difference is ascribed to seasonal bias in the growth of P. vesicularis, causing warm seasons to be underrepresented The Late Cretaceous is generally considered a greenhouse H from the record, while TEX86 palaeothermometry seems to world (e.g. Hay, 2008). Indeed, reconstructed global mean be biased towards warmer surface water temperatures. The temperatures and atmospheric pCO2 concentrations for this multi-proxy approach employed here enables us to differen- period generally exceed those of the present-day climate Published by Copernicus Publications on behalf of the European Geosciences Union. 726 N. J. de Winter et al.: Testing Pycnodonte vesicularis shells as palaeoseasonality recorders (e.g. Berner, 1990; Andrews et al., 1995; Ekart et al., 1999; called “vital effects”; Dunbar and Wefer, 1984; Weiner and Hunter et al., 2008; Quan et al., 2009; Wang et al., 2013). As Dove, 2003; Gillikin et al., 2005b; Lorrain et al., 2005; Carré such, the Late Cretaceous may be considered an analogue for et al., 2005). These vital effects are often species specific climate of the near future if anthropogenic greenhouse gas and limit the applicability of proxy transfer functions from emissions continue unabated (Hay, 2013; IPCC, 2014; Dlu- modern culture studies to multiple species in the same study gokencky, 2017). Many studies have yielded reconstructions or to species for which no culture study data are available. of Late Cretaceous climates using either climate models or a The integration of different species of bivalves in palaeo- variety of proxies in temporally long archives, such as deep- climate studies is further complicated by the various eco- sea cores and continental sections (Pearson et al., 2001; Hu- logical niches these species of bivalves occupy, resulting in ber et al., 2002; Otto-Bliesner et al., 2002; Miller et al., 2003; great variability in their direct environments (Chauvaud et Friedrich et al., 2012; de Winter et al., 2014; Vellekoop et al., 2005; Dreier et al., 2014). In addition, bivalves are often, al., 2016). Yet, although most deep-time climate reconstruc- though not exclusively, found in shallow marine and estuar- tions so far have focused on reconstructing mean annual tem- ine environments. This further complicates the interpretation peratures (MAT), climate change also involves changes in of bivalve records in terms of global climate (e.g. Surge et other climate parameters, such as precipitation, seasonality al., 2001; Richardson et al., 2004; Gillikin et al., 2008; Wis- and the frequency of extreme weather events, which all take shak et al., 2009; Ullmann et al., 2010; Crippa et al., 2016), place on timescales shorter than those that can be resolved as these environments are often characterized by large varia- in the above mentioned long archives. Therefore, it is impor- tions in temperature, salinity and water chemistry, making it tant that these climate variations are understood on a shorter hard to disentangle the effects of different environmental pa- timescale. rameters on geochemical proxies (e.g. Duinker et al., 1982; One way to achieve such high-resolution palaeoclimate Morrison et al., 1998; Pennington et al., 2000). and palaeoenvironmental reconstructions is by using marine The above-mentioned problem of combining different organisms that grow their shells incrementally. Marine bi- high-resolution climate records to study climatic variations valves are excellent palaeoclimate recorders, since they have on a geological timescale can be overcome by combining a broad geographic distribution and because the rapid se- results from multiple well-preserved bivalve specimens of cretion of their shells allows for the high time resolution the same species and in the same geological setting. Sev- needed to resolve climate parameters on a sub-annual scale eral studies have tried such a multi-specimen approach to (e.g. Jones, 1983; Dettman and Lohmann, 1993; Steuber, trace changes in high-resolution climate parameters, such 1996; Schöne et al., 2005a, b). The relationship between as seasonal variations, over geological timescales (Dettman shell chemistry and the environmental conditions in which and Lohmann, 2000; Dettman et al., 2001; Steuber et al., bivalves grow has been studied intensively (Gillikin et al., 2005; Gutiérrez-Zugasti et al., 2016). However, such recon- 2005a; Elliot et al., 2009; Marali and Schöne, 2015). As a re- structions require bivalve species that preserve well, are ge- sult, many geochemical proxies have been described based ographically widespread, have a high occurrence frequency on bivalve calcite. Examples include temperature calibra- over longer timescales and record seasonal-scale variations tions for Mg = Ca and stable oxygen isotope ratios (δ18O; within their shell. Potential candidate species for such stud- e.g. Klein et al., 1996a; Richardson et al., 2004; Freitas et ies are bivalves of the genus Pycnodonte. This genus of al., 2008; Wanamaker et al., 2008), tentative salinity calibra- oysters (Bivalvia: Ostreoida; Fischer von Waldheim, 1835) tions using Sr = Ca and the combination of Mg = Ca and δ18O is characterized by a well-developed commissural shelf and (Dodd and Crisp, 1982; Klein et al., 1996a; Watanabe et al., vesicular shell microstructure (hence the name “honeycomb 2001) and proxies for palaeoproductivity, such as Ba / Ca and oyster” or “foam oyster”; Stenzel, 1971; Hayami and Kase, Mn / Ca (Lazareth et al., 2003; Gillikin et al., 2008). 1992). Members of the genus Pycnodonte are found in ge- Despite their potential for high-resolution palaeoenviron- ological deposits from the Lower Cretaceous to the Pleis- mental reconstruction, seasonally resolved bivalve records tocene. The appearance of Pycnodonte shells in a wide are rarely combined with longer timescale reconstructions range of palaeolatitudes and geological settings, especially (e.g. Steuber et al., 2005; Schöne et al., 2005c; Harzhauser in the Cretaceous, makes them a promising archive for high- et al., 2011; Butler et al., 2013; Hallmann et al., 2013). The resolution climate
Recommended publications
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • Danise Et Al 2020 Gondwana Research.Docx.Pdf
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2020-06 Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean Danise, S http://hdl.handle.net/10026.1/15995 10.1016/j.gr.2019.12.011 Gondwana Research Elsevier BV All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Please cite as: Danise, S., Price, G.D., Alberti, M., Holland S.M. 2020 Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean. Gondwana Research, 82, 97–107. Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean Silvia Danise a,b,⁎, Gregory D. Price a, Matthias Alberti c, Steven M. Holland d a School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK b Dipartimento di Sicenze della Terra, Università degli Studi di Firenze, via La Pira 4, 50121 Firenze, Italy c Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany d Department of Geology, University of Georgia, Athens, GA 30602-2501, USA a b s t r a c t Article history: Received 21 October 2019 Received in revised form 20 December 2019 Accepted 20 December 2019 Available online 30 January 2020 Handling Editor: A.
    [Show full text]
  • Big Oyster, Robust Echinoid: an Unusual Association from the Maastrichtian Type Area (Province of Limburg, Southern Netherlands)
    Swiss Journal of Palaeontology (2018) 137:357–361 https://doi.org/10.1007/s13358-018-0151-3 (0123456789().,-volV)(0123456789().,-volV) REGULAR RESEARCH ARTICLE Big oyster, robust echinoid: an unusual association from the Maastrichtian type area (province of Limburg, southern Netherlands) 1,2 3 Stephen K. Donovan • John W. M. Jagt Received: 27 February 2018 / Accepted: 10 May 2018 / Published online: 1 June 2018 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2018 Abstract Large, denuded tests of holasteroid echinoids were robust benthic islands in the Late Cretaceous seas of northwest Europe. A test of Hemipneustes striatoradiatus (Leske) from the Nekum Member (Maastricht Formation; upper Maastrichtian) of southern Limburg, the Netherlands, is encrusted by a large oyster, Pycnodonte (Phygraea) vesiculare (Lamarck). This specimen is a palaeoecological conundrum, at least in part. No other members of the same oyster spatfall attached to this test and survived. Indeed, only two other, much smaller bivalve shells, assignable to the same species, attached either then or somewhat later. The oyster, although large, could have grown to this size in a single season. The larval oyster cemented high on the test and this would have been advantageous initially, the young shell being elevated above sediment-laden bottom waters. However, as the oyster grew, the incurrent margin of the commissure would have grown closer to the sediment surface. Thus, the quality of the incurrent water probably deteriorated with time. Keywords Late Cretaceous Á Pycnodonte Á Hemipneustes Á Taphonomy Á Palaeoecology Introduction et al. 2013, 2017). Associations on holasteroid tests may be monospecific or nearly so, such as dense accumulations of Large holasteroid echinoids, such as the genera pits assigned to Oichnus Bromley, 1981 (see, for example, Echinocorys Leske, 1778, Cardiaster Forbes, 1850, and Donovan and Jagt 2002; Hammond and Donovan 2017; Hemipneustes Agassiz, 1836, in the Upper Cretaceous of Donovan et al.
    [Show full text]
  • A Record of Solecurtus Scopula (Turton, 1822) (Mollusca: Bivalvia: Solecurtidae) from the Strait of Dover
    A record of Solecurtus scopula (Turton, 1822) (Mollusca: Bivalvia: Solecurtidae) from the Strait of Dover Frank Nolf Pr. Stefanieplein, 43/8 – B-8400 Oostende [email protected] Keywords: BIVALVIA, SOLECURTIDAE, Recently, in November 2007, a live specimen Solecurtus scopula, Strait of Dover. was caught by a fishing boat from Zeebrugge (Belgium) at a depth of 40-42 m at 8 miles west Abstract: The presence of Solecurtus scopula of Boulogne-sur-Mer, NE France. This species is (Turton, 1822) in waters near the North Sea is rarely reported from this area. The specimen confirmed by the record of a single live-caught measures: H. 17.95 mm. and L. 42.36 mm. specimen trawled off Boulogne-sur-Mer, NE France. Since Forbes & Hanley (1853), it has been assumed that the genus Solecurtus is Abbreviations: represented by a species initially named as S. FN: Private collection of Frank Nolf candidus (Renier, 1804) in the British and Irish H: height waters. The synonymy of Forbes & Hanley L: length (1853) also contained Psammobia scopula Turton, 1822. Jeffreys (1865) considered S. Material examined: One specimen of Solecurtus candidus, S. scopula and the fossil species S. scopula (Turton, 1822), trawled by fishermen multistriatus (Scacchi, 1835) synonymous. After from Zeebrugge (Belgium) at a depth of 40-42 m, the rejection of Renier’s work by the ICZN 8 miles west of Boulogne-sur-Mer. November (1954), the British shells were named S. scopula 2007. (Plate I, Figs 1-4). (Turton, 1822). This is the name used by McMillan (1968) and Tebble (1969) who thought that only one Solecurtus-species occurred in British waters.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Characteristic Marine Molluscan Fossils from the Dakota Sandstone and Intertongued Mancos Shale, West-Central New Mexico
    Characteristic Marine Molluscan Fossils From the Dakota Sandstone and Intertongued Mancos Shale, West-Central New Mexico GEOLOGICAL SURVEY PROFESSIONAL PAPER 1009 Characteristic Marine Molluscan Fossils From the Dakota Sandstone and Intertongued Mancos Shale, West-Central New Mexico By WILLIAM A. COBBAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 1009 Brief descriptions, illustrations, and stratigraphic sequence of the more common fossils at the base of the Cretaceous System UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916- Characteristic marine molluscan fossils from the Dakota sandstone and intertongued Mancos shale, West- central New Mexico. (Geological Survey professional paper ; 1009) Bibliography: p. Includes index. 1. Lamellibranchiata, Fossil. 2. Gastropoda, Fossil. 3. Ammonoidea. 4. Paleontology Cretaceous. 5. Paleontol­ ogy New Mexico. I. Title: Characteristic marine molluscan fossils from the Dakota sandstone ***!!. Series: United States. Geological Survey. Professional paper ; 1009. QE811.G6 564'.09789'8 76-26956 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03003-9 CONTENTS Page Abstract ________________________________________--__- 1 Introduction ________________________________________ Acknowledgments _____________________________ Stratigraphic summary _________________________
    [Show full text]
  • Nihieiicanjmllseum
    nihieiicanJMllseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 206 JANUARY 29, I 965 Classification of the Bivalvia BY NORMAN D. NEWELL' INTRODUCTION The Bivalvia are wholly aquatic benthos that have undergone secondary degeneration from the condition of the ancestral mollusk (possibly, but not certainly, a monoplacophoran-like animal; Yonge, 1953, 1960; Vokes, 1954; Horny, 1960) through the loss of the head and the adoption of a passive mode of life in which feeding is accomplished by the filtering of water or sifting of sediment for particulate organic matter. These adapta- tions have limited the evolutionary potential severely, and most structural changes have followed variations on rather simple themes. The most evi- dent adaptations are involved in the articulation of the valves, defense, anchorage, burrowing, and efficiency in feeding. Habitat preferences are correlated with the availability of food and with chemistry, temperature, agitation and depth of water, and with firmness of the bottom on, or within, which they live. The morphological clues to genetic affinity are few. Consequently, parallel trends are rife, and it is difficult to arrange the class taxonomically in a consistent and logical way that takes known history into account. The problem of classifying the bivalves is further complicated by the fact that critical characters sought in fossil representatives commonly are concealed by rock matrix or are obliterated by the crystallization or disso- lution of the unstable skeletal aragonite. The problem of studying mor- I Curator, Department of Fossil Invertebrates, the American Museum of Natural History; Professor of Geology, Columbia University in the City of New York.
    [Show full text]
  • Variation of Sperm Morphology in Pacific Oyster Precludes Its Use As a Species Marker but Enables Intraspecific Geo-Authentifica
    Reunov et al. Helgol Mar Res (2018) 72:8 https://doi.org/10.1186/s10152-018-0510-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Variation of sperm morphology in Pacifc oyster precludes its use as a species marker but enables intraspecifc geo‑authentifcation and aquatic monitoring Arkadiy Reunov1,2*, Evgenia Vekhova2, Evgeny Zakharov3, Yulia Reunova2, Yana Alexandrova2, Svetlana Sharina2,4 and Andrey Adrianov2,4 Abstract According to recent reports, shell morphology is unreliable for the identifcation of oysters because of the high phe- notypic plasticity of these bivalves. Using COI DNA barcoding and sperm morphology, we reinvestigated the species validity of wild Pacifc oyster Crassostrea gigas habituating the Peter the Great Bay (Sea of Japan). DNA barcoding con- frmed the species validity of samples collected. Application of the single sperm pattern was not possible for species identifcation due to pronounced sperm plasticity being found. Six sperm morphs were discovered in the testes of each oyster collected. The amount of abundant sperm morphs and the type of the most dominant sperm pattern are particular to geographical localities that are individual depending on the environmental factors. Ecological monitor- ing of marine areas and commercially assigned intraspecifc geo-authentifcation of the Pacifc oyster seems possible based on the analysis of this species’ heterogenic sperm. Further work will be needed to test if sperm heterogeneity exists in other Ostreidae species and if heterogenic sperms could be used for interspecifc analysis. Keywords: Pacifc Ocean, Sea of Japan, Crassostrea gigas, DNA barcoding, COI, Sperm Introduction both genetic data and morphological feature. Tus, a Te Pacifc shore in the far eastern region of Russia (Pri- reliable morphological trait is needed.
    [Show full text]
  • Chapter I Taxonomy
    THE AMERICAN OYSTER CRASSOSTREA VIRGINICA GMELIN By PAUL S. GALTSOFF, Fishery Biologist BUREAU OF COMMERCIAL FISHERIES CHAPTER I TAXONOMY Page This broad characterization included a number Taxonomic characters _ 4 SheIL _ 4 of genera such as scallops, pen shells (Pinnidae), Anatomy _ 4 Sex and spawnlng _ limas (Limidae) and other mollusks which ob­ 4 Habitat _ 5 viously are not oysters. In the 10th edition of Larvll! shell (Prodlssoconch) _ 6 "Systema Naturae," Linnaeus (1758) wrote: The genera of living oysters _ 6 Genus 08trea _ 6 "Ostreae non orones, imprimis Pectines, ad Genus Cra8808trea _ 7 Genus Pycnodonte _ cardinem interne fulcis transversis numerosis 7 Bibliography _ 14 parallelis in utraque testa oppositis gaudentiquae probe distinguendae ab Areis polypleptoginglymis, The family Ostreidae consists of a large number cujus dentes numerosi alternatim intrant alterius of edibleand nonedible oysters. Their distribution sinus." Le., not all are oysters, in particular the is confined to a broad belt of coastal waters within scallops, which have many parallel ribs running the latitudes 64° N. and 44° S. With few excep­ crosswise inward toward the hinge on each shell tions oysters thrive in shallow water, their vertical on opposite sides; these should properly be dis­ distribution extending from a level approximately tinguished from Area polyleptoginglymis whose halfway between high and low tide levels to a many teeth alternately enter between the teeth depth of about 100 feet. Commercially exploited of the other side. oyster beds are rarely found below a depth of 40 In the same publication the European flat feet. oyster, Ostrea edulis, is described as follows: The· name "Ostrea" was given by Linnaeus "Vulgo Ostrea dictae edulis.
    [Show full text]
  • USGS Professional Paper 1662, Chapter 4
    Studies by the U.S. Geological Survey in Alaska, 2000 U.S. Geological Survey Professional Paper 1662 Late Triassic (Norian) Mollusks From the Taylor Mountains Quadrangle, Southwestern Alaska By Christopher A. McRoberts1 and Robert B. Blodgett2 Abstract Such paleobiogeographic data as those presented herein are extremely useful in constraining the past geographic positions We describe a diverse molluscan fauna of silicified fossils of these mobile terranes over time, and so are of utmost utility from two localities in the Taylor Mountains D–3 quadrangle of in unraveling the tectonic history of this part of Alaska. southwestern Alaska. The molluscan fauna consists of at least 8 species of bivalves, including 1 new species, Cassianella cordillerana McRoberts n.sp., and at least 11 species of gas- Geologic Setting tropods, including 2 new species, Neritaria nuetzeli Blodgett n.sp. and Andangularia wilsoni Blodgett n.sp. Bivalve and gastropod affinities suggest an early Norian age, with taxo- The Farewell terrane of southwestern and west-central nomic similarities to several southern Alaskan tectonostrati- Alaska (fig. 1) was established by Decker and others (1994) graphic terranes (for example, Alexander and Chulitna), as as a tectonostratigraphic entity incorporating three previously well as to the South American Cordillera of Peru. The mol- named, genetically related terranes (Nixon Fork, Dillinger, lusks are associated with numerous brachiopods that also sup- and Mystic) that are relegated the status of subterranes of the port a Norian
    [Show full text]