Variation of Sperm Morphology in Pacific Oyster Precludes Its Use As a Species Marker but Enables Intraspecific Geo-Authentifica

Total Page:16

File Type:pdf, Size:1020Kb

Variation of Sperm Morphology in Pacific Oyster Precludes Its Use As a Species Marker but Enables Intraspecific Geo-Authentifica Reunov et al. Helgol Mar Res (2018) 72:8 https://doi.org/10.1186/s10152-018-0510-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Variation of sperm morphology in Pacifc oyster precludes its use as a species marker but enables intraspecifc geo‑authentifcation and aquatic monitoring Arkadiy Reunov1,2*, Evgenia Vekhova2, Evgeny Zakharov3, Yulia Reunova2, Yana Alexandrova2, Svetlana Sharina2,4 and Andrey Adrianov2,4 Abstract According to recent reports, shell morphology is unreliable for the identifcation of oysters because of the high phe- notypic plasticity of these bivalves. Using COI DNA barcoding and sperm morphology, we reinvestigated the species validity of wild Pacifc oyster Crassostrea gigas habituating the Peter the Great Bay (Sea of Japan). DNA barcoding con- frmed the species validity of samples collected. Application of the single sperm pattern was not possible for species identifcation due to pronounced sperm plasticity being found. Six sperm morphs were discovered in the testes of each oyster collected. The amount of abundant sperm morphs and the type of the most dominant sperm pattern are particular to geographical localities that are individual depending on the environmental factors. Ecological monitor- ing of marine areas and commercially assigned intraspecifc geo-authentifcation of the Pacifc oyster seems possible based on the analysis of this species’ heterogenic sperm. Further work will be needed to test if sperm heterogeneity exists in other Ostreidae species and if heterogenic sperms could be used for interspecifc analysis. Keywords: Pacifc Ocean, Sea of Japan, Crassostrea gigas, DNA barcoding, COI, Sperm Introduction both genetic data and morphological feature. Tus, a Te Pacifc shore in the far eastern region of Russia (Pri- reliable morphological trait is needed. Considering that morye) is a habitat for the wild Pacifc oyster that is not in some cases the sperm structure is used for bivalve an object of commercial fshing and represents a natural mollusc identifcation [7], it seems reasonable to inves- reserve of this commercially valuable bivalve mollusc. tigate if the morphology of spermatozoa could be used Tis oyster has been identifed as Crassostrea gigas based as a feature for the identifcation of the Pacifc oysters in on shell morphology [1–3]. However, shell appearance is Primorye. not a reliable feature for oyster identifcation because of During this work, we aimed to test if sperm morphol- high phenotypic plasticity in these bivalves [4, 5]. Taking ogy is specifc enough to be used as a taxonomically into account that the validity of C. gigas has never been signifcant feature for Pacifc oyster identifcation in Pri- genetically confrmed in Primorye, the genetic analysis morye. Using COI DNA barcoding that is assigned as of specimens seems necessary. According to Will et al. most convenient for species validity identifcation [8], [6], the most valid identifcation of species must be con- and proven for successful discrimination of other oyster ducted by integrative taxonomy using a combination of species [9], we also aimed to determine if the samples collected belong to C. gigas. *Correspondence: [email protected] 1 Electron Microscopy Laboratory, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada Full list of author information is available at the end of the article © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Reunov et al. Helgol Mar Res (2018) 72:8 Page 2 of 11 Materials and methods Total DNA was extracted from pieces of mantle Specimen collection (3–5 mm3) according to a standard phenol/chlorophorm Living specimens of the Pacifc oyster Crassostrea gigas extraction method [10]. Partial sequences of mitochon- (Tunberg, 1793) were collected in 2015. Te end of July drial cytochrome c oxidase subunit I gene (COI) were was chosen for collection because it is a period of natural amplifed and sequenced using the universal invertebrate spawning of oysters in Primorye. Four geographic locali- primer pairs: LCO1490—5′-GGT CAA CAA ATC ATA ties were chosen for sampling (Fig. 1). 1—location in the AAG ATA TTG G-3′ and HCO2198—5′-TAA ACT TCA Amursky Bay (the Peter the Great Bay, Sea of Japan, Rus- GGG TGA CCA AAA AAT CA-3′ [11]. sia, 43°14′27.69″N, 131°89′72.60″E). 2—location in the PCR amplifcation was performed in a 25 µl reaction Eastern Bosphorus Strait (the Peter the Great Bay, Sea of volume containing 17.4 µl of water; 2.5 µl of 10 × bufer Japan, Russia, 43°07′32.14″N, 131°84′34.27″E); 3—loca- (Evrogen); 2.0 µl of dNTP (concentration 2.5 mM of each, tion in the Ussuriisky Bay (the Peter the Great Bay, Sea Evrogen); 1 µl of each forward and reverse PCR primer of Japan, Russia, 43°18′83.65″N, 132°11′23.44″E); 4— (5 pmol/µl); 0.1 µl of Taq DNA polymerase (5 units/µl, location in the Vostok Bay (the Peter the Great Bay, Sea Evrogen); and 1 µl of template DNA solution. Te cycling of Japan, Russia, 42°89′32.45″N, 132°73′47.65″E). Tree parameters were an initial denaturation step at 94 °C males from each location were selected for both the (3 min), followed by 30 cycles of denaturation for 45 s at genetic analysis and study of male gametes. 94 °C, annealing for 90 s at 42 °C, and extension for 120 s at 72 °C; and a fnal extension phase at 72 °C for 5 min. Genetic analysis Amplifcation products were applied as templates for Specimens were deposited at the Canadian Centre for sequencing, using the same primers as for PCR and “Big DNA Barcoding, Biodiversity Institute of Ontario (Uni- Dye Terminator Cycle Sequencing Kit” v. 3.1 (Applied versity of Guelph, Canada) with the following catalogue Biosystems, USA) following the manufacturer’s protocol. numbers: YARRA063-12, YARRA064-12, YARRA065- Te cycling parameters were an initial denaturation step 12 (Amursky Bay, Sea of Japan, Russia); YARRA066- at 96 °C (1 min), followed by 25 cycles of 10 s at 96 °C, 12, YARRA067-12, YARRA068-12 (Eastern Bosporus 10 s at 42–49 °C and 4 min at 60 °C. Sequencing reaction Strait, Sea of Japan, Russia); YARRA069-12, YARRA070- products were purifed by ethanol precipitation and ana- 12, YARRA (Ussuriisky Bay, Sea of Japan, Russia); lysed on an ABI-3130 Genetic Analyzer (Applied Biosys- YARRA060-12, YARRA061-12, YARRA062-12 (Vostok tems, ABI, USA). Sequences were verifed by forward and Bay, Sea of Japan, Russia). reverse comparisons. Fig. 1 Pacifc oyster Crassostrea gigas. The map showing the geographic locations of specimens collected in Primorye. 1—location in the Amursky Bay (the Peter the Great Bay, Sea of Japan, Russia, 43°14′27.69″N, 131°89′72.60″E). 2—location in the Eastern Bosphorus Strait (the Peter the Great Bay, Sea of Japan, Russia, 43°07′32.14″N, 131°84′34.27″E); 3—location in the Ussuriisky Bay (the Peter the Great Bay, Sea of Japan, Russia, 43°18′83.65″N, 132°11′23.44″E); 4—location in the Vostok Bay (the Peter the Great Bay, Sea of Japan, Russia, 42°89′32.45″N, 132°73′47.65″E) Reunov et al. Helgol Mar Res (2018) 72:8 Page 3 of 11 Te contigs were obtained and edited using Chro- and critical-point dried in CO2. Dried materials were masPro v. 1.7.6 (http://www.techn elysi um.com.au/ mounted onto aluminum stubs, coated with gold, and chrom as.html). Eleven sequences, 658 bp in length, were examined with a scanning electron microscope LEO-430. obtained. All sequences and their metadata determined in this study have been deposited in the BOLD database Quantitative analysis (Barcode of Life Data System) (http://bolds ystem s.prg) under accession numbers YARRA060-12|RRYA-60– Te quantifcation of sperm morphology patterns was YARRA070|RRYA-70. Our dataset was compared done for the oysters with catalogue numbers YARRA063- with the sequences of C. gigas from GenBank (NCBI, 12, YARRA064-12, YARRA065-12 (Amursky Bay, http://www.ncbi.nlm.nih.gov/) and BOLD. Sequences Sea of Japan, Russia); YARRA066-12, YARRA067- of two species from the genus Crassostrea (C. virginica 12, YARRA068-12 (Eastern Bosporus Strait, Sea of (EU007485) and C. sikamea (AY632568)) were selected Japan, Russia), YARRA069-12, YARRA070-12, YARRA as the outgroup. (Ussuriisky Bay, Sea of Japan, Russia); YARRA060-12, Sequences were aligned using MUSCLE [12] imple- YARRA061-12, YARRA062-12 (Vostok Bay, Sea of Japan, mented in the program MEGA 5 [13]. MEGA 5 was also Russia). For each sample, 100 sperm cells were consid- used to calculate pairwise genetic distances (p distances) ered, thus 300 cells were studied for each location, and and to build trees. Kimura’s two-parameter model (K2P) 1200 sperms were investigated altogether. Sperm pat- [14] was used for estimation of intraspecifc and inter- terns were identifed by scanning electron microscopy specifc distances and constructed neighbor-joining (NJ) and the frequency of each pattern was calculated. All trees. All estimations of sequences and distances were values are expressed as means with standard error of the performed excluding the outgroup. Bootstrap analysis mean (SEM). Diferences between groups were calcu- with 1000 replications was used to assess the stability of lated using Student’s t test. P < 0.05 was considered statis- each node.
Recommended publications
  • Biochemical Composition and Condition of Crassostrea Gigas (Thunberg, 1793) in Relation to Integrated Multi-Trophic Aquaculture (IMTA) Feed Sources
    Biochemical composition and condition of Crassostrea gigas (Thunberg, 1793) in relation to integrated multi-trophic aquaculture (IMTA) feed sources vorgelegt von: Maximilian Felix Schupp geb. am 06.06.1990 in Lippstadt Erstgutachter: Zweitgutachter: Dr. Adrian Bischoff-Lang Prof. Dr. Bela H. Buck Universität Rostock Alfred-Wegener-Institut Agrar- und Umweltwissenschaftliche Helmholtz Zentrum für Polar Fakultät und Meeresforschung (AWI) Lehrstuhl Aquakultur und Sea-Ranching MASTERARBEIT im Studiengang Aquakultur und Sea-Ranching Agrar- und Umweltwissenschaftliche Fakultät Rostock, 2015 Directory 1 INTRODUCTION .................................................................................................. 1 2 BACKGROUND ..................................................................................................... 5 2.1 Biology of Crassostrea gigas ............................................................................................................. 5 2.2 Lipids and fatty acids...................................................................................................................... 10 3 MATERIALS AND METHODS ......................................................................... 12 3.1 Specimen .......................................................................................................................................... 12 3.2 Experimental setup ......................................................................................................................... 12 3.3 Determination of dry weight
    [Show full text]
  • Annual Report Fy2016
    ANNUAL REPORT FY2016 AFFILIATED WITH Affiliated with Cornell University PRI: WHO WE ARE Founded in 1932, the Paleontological Research Institution (PRI) pursues and integrates education and research, and interprets the history and systems of the Earth and its life. Our aim is to increase knowledge, educate society, and encourage wise stewardship of the Earth. PRI has two campuses and one large plot of forest property north of Ithaca, NY. Palmer Hall Museum of the Earth Named in honor of Katherine Palmer Opened in 2003, the Museum of the Earth (Director, 1952-1978), Palmer Hall is the is home to temporary and permanent Institution’s main building, housing PRI’s exhibitions that teach visitors about the collections, laboratories, library, and offices. history of life on Earth. Cayuga Nature Center Smith Woods The Cayuga Nature Center merged with Located in Trumansburg, NY, Smith Woods PRI in 2013. The Nature Center’s education is the largest plot of old-growth forest in programs and exhibitions focus on the central New York. More than 32 acres large, natural history of the Cayuga Lake basin, Smith Woods serves as a research and and are conducted in the Lodge and on the education resource for elementary through 120 acres of woodlands and fields on-site. graduate students. TABLE OF CONTENTS DIRECTOR’S AND PRESIDENT’S MESSAGE 2-3 PRI SERVES: 2016-2016 AT A GLANCE 4-5 RESEARCH 6-9 PUBLICATIONS 10-11 COLLECTIONS 12-13 EDUCATION 14-18 GRANTS 19 CORNELL UNIVERSITY RELATIONS 20-23 MUSEUM OF THE EARTH 24-25 CAYUGA NATURE CENTER 26-27 EXHIBITIONS 28-31 COMMUNITY ACCESSIBILITY 32-33 INTERNS AND VOLUNTEERS 34-35 DONOR SUPPORT 36-39 FINANCIAL ACTIVITY STATEMENT 40 BOARD OF TRUSTEES AND STAFF 41 FRONT COVER BACKGROUND IMAGE: Blue sky at the Cayuga Nature Center.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • Danise Et Al 2020 Gondwana Research.Docx.Pdf
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences 2020-06 Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean Danise, S http://hdl.handle.net/10026.1/15995 10.1016/j.gr.2019.12.011 Gondwana Research Elsevier BV All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Please cite as: Danise, S., Price, G.D., Alberti, M., Holland S.M. 2020 Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean. Gondwana Research, 82, 97–107. Isotopic evidence for partial geochemical decoupling between a Jurassic epicontinental sea and the open ocean Silvia Danise a,b,⁎, Gregory D. Price a, Matthias Alberti c, Steven M. Holland d a School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK b Dipartimento di Sicenze della Terra, Università degli Studi di Firenze, via La Pira 4, 50121 Firenze, Italy c Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany d Department of Geology, University of Georgia, Athens, GA 30602-2501, USA a b s t r a c t Article history: Received 21 October 2019 Received in revised form 20 December 2019 Accepted 20 December 2019 Available online 30 January 2020 Handling Editor: A.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Structure and Distribution of Chalky Deposits in the Pacific Oyster Using
    www.nature.com/scientificreports OPEN Structure and distribution of chalky deposits in the Pacifc oyster using x‑ray computed tomography (CT) Roxanne M. W. Banker* & Dawn Y. Sumner Oysters are unusual among bivalves in that they possess chambers, often flled with soft, chalky calcite, that are irregularly scattered throughout the shell. Because the function of these so‑called chalky deposits is still unclear, evaluating the growth and distribution of chalk is important for elucidating the ecological function of this unique shell trait. Specimens of the Pacifc oyster Magallana gigas, an oyster well known for chalk expression, were grown in Bodega Harbor, Bodega Bay, CA. At the end of an 11 month growing period, specimens were culled and selected animals were submitted for x‑ray computed‑tomography imaging. Three‑dimensional reconstructions of oyster shells were used to assess the overall distribution of chalk, and also to better understand the relationship between chalk and other structures within the shell. Results indicate that chalky deposits underly sculptural features on the shell exterior, such as external ridges and changes in growth direction, and also that there is a relationship between chalk formation and oyster processes of cementation. Overall, chalk is useful for a cementing lifestyle because it enables morphological plasticity needed to conform to irregular substrates, but also acts as a cheap building material to facilitate rapid growth. Many researchers have used preserved remains of shells (molluscan or otherwise) to improve scientifc under- standing of paleoecosystems and organismal interactions in the fossil record1–3. Oysters (Bivalvia: Ostreidae) have utility in this setting because they are well preserved in the fossil record, and are widely geographically dis- tributed in paleo and modern ecosystems4.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • USGS Professional Paper 1662, Chapter 4
    Studies by the U.S. Geological Survey in Alaska, 2000 U.S. Geological Survey Professional Paper 1662 Late Triassic (Norian) Mollusks From the Taylor Mountains Quadrangle, Southwestern Alaska By Christopher A. McRoberts1 and Robert B. Blodgett2 Abstract Such paleobiogeographic data as those presented herein are extremely useful in constraining the past geographic positions We describe a diverse molluscan fauna of silicified fossils of these mobile terranes over time, and so are of utmost utility from two localities in the Taylor Mountains D–3 quadrangle of in unraveling the tectonic history of this part of Alaska. southwestern Alaska. The molluscan fauna consists of at least 8 species of bivalves, including 1 new species, Cassianella cordillerana McRoberts n.sp., and at least 11 species of gas- Geologic Setting tropods, including 2 new species, Neritaria nuetzeli Blodgett n.sp. and Andangularia wilsoni Blodgett n.sp. Bivalve and gastropod affinities suggest an early Norian age, with taxo- The Farewell terrane of southwestern and west-central nomic similarities to several southern Alaskan tectonostrati- Alaska (fig. 1) was established by Decker and others (1994) graphic terranes (for example, Alexander and Chulitna), as as a tectonostratigraphic entity incorporating three previously well as to the South American Cordillera of Peru. The mol- named, genetically related terranes (Nixon Fork, Dillinger, lusks are associated with numerous brachiopods that also sup- and Mystic) that are relegated the status of subterranes of the port a Norian
    [Show full text]
  • An Assessment of Latest Cretaceous Pycnodonte Vesicularis (Lamarck, 1806) Shells As Records for Palaeoseasonality: a Multi-Proxy Investigation
    Clim. Past, 14, 725–749, 2018 https://doi.org/10.5194/cp-14-725-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation Niels J. de Winter1,*, Johan Vellekoop1,2,*, Robin Vorsselmans2, Asefeh Golreihan2, Jeroen Soete2, Sierra V. Petersen3, Kyle W. Meyer3, Silvio Casadio4, Robert P. Speijer2, and Philippe Claeys1 1Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium 2Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium 3Earth and Environmental Sciences Department, University of Michigan, Ann Arbor, Michigan, USA 4Escuela de Geología, Paleontología y Enseñanza de las Ciencias, Universidad Nacional de Río Negro, CONICET, General Roca, Argentina *These authors contributed equally to this work. Correspondence: Niels J. de Winter ([email protected]) Received: 26 September 2017 – Discussion started: 11 October 2017 Revised: 4 April 2018 – Accepted: 21 May 2018 – Published: 8 June 2018 Abstract. In order to assess the potential of the honey- tiate between well-preserved and diagenetically altered por- comb oyster Pycnodonte vesicularis for the reconstruction tions of the shells and provides an improved methodology for of palaeoseasonality, several specimens recovered from late reconstructing palaeoenvironmental conditions in deep time. Maastrichtian strata in the Neuquén Basin (Argentina) were While establishing a chronology for these shells was compli- subject to a multi-proxy investigation, involving scanning cated by growth cessations and diagenesis, cyclicity in trace techniques and trace element and isotopic analysis. Com- elements and stable isotopes allowed for a tentative interpre- bined CT scanning and light microscopy reveals two cal- tation of the seasonal cycle in late Maastrichtian palaeoen- cite microstructures in P.
    [Show full text]
  • D9.1 Report on Environmental Impacts from Brine Discharge
    D9.1 Report on environmental impacts from brine discharge October 2020 Draft Deliverable 9.1 Report on environmental impacts from brine discharge Related Work Package WP9 – Subtask 9.2.2 Deliverable lead University of Aberdeen (ABDN) Author(s) Sergio Carlos Garcia Gomez, Taxonomist Contact [email protected] [email protected] Reviewer Frithjof Kuepper Grant Agreement Number 730390 Instrument Horizon 2020 Framework Programme Start date 1.6.2017 Duration 48 months Type of Delivery (R, DEM, DEC, Other)1 R Dissemination Level (PU, CO, Cl)2 PU Date last update 9 October 2020 Website www.zerobrine.eu Name of researcher(s) with roles Eleni Avramidi, Honorary Research Fellow, School of Biological Sciences (ABDN) Prof. Frithjof Kuepper, Chair in Marine Biodiversity, School of Biological Sciences (ABDN) 1 R=Document, report; DEM=Demonstrator, pilot, prototype; DEC=website, patent fillings, videos, etc.; OTHER=other 2 PU=Public, CO=Confidential, only for members of the consortium (including the Commission Services), CI=Classified ZERO BRINE – Industrial Wastewater – Resource Recovery – Circular Economy 1 Revision Date Description Author(s) no 0.1 30 May 2020 First draft Prof. Frithjof Kuepper (ABDN) Eleni Avramidi (ABDN) Sergio Carlos Garcia Gomez, Taxonomist 0.2 14 Oct. 2020 Second draft Prof. Frithjof Kuepper (ABDN) The chapters “Executive summary” Eleni Avramidi (ABDN) and “Conclusions” have been Sergio Carlos Garcia Gomez, included. The comments of the Taxonomist internal review have been incorporated. The ZERO BRINE project has received funding from the European Commission under the Horizon 2020 programme, Grant Agreement no. 730390. The opinions expressed in this document reflect only the author’s view and in no way reflect the European Commission’s opinions.
    [Show full text]
  • Environmental Setting of Deep-Water Oysters in the Bay of Biscay
    Deep Sea Research Part I: Oceanographic Archimer Research Papers http://archimer.ifremer.fr December 2010, Volume 57 (12), pp. 1561-1572 http://dx.doi.org/10.1016/j.dsr.2010.09.002 © 2010 Elsevier Ltd. All rights reserved. ailable on the publisher Web site Environmental setting of deep-water oysters in the Bay of Biscay D. Van Rooija, *, L. De Mola, E. Le Guillouxb, M. Wisshakc, V.A.I. Huvenned, R. Moeremanse, a, J.-P. Henrieta a Renard Centre of Marine Geology, Ghent University, Krijgslaan 281 S8, B-9000 Gent, Belgium b IFREMER, Laboratoire Environnement Profond, BP70, F-29280 Plouzané, France c GeoZentrum Nordbayern, Erlangen University, Loewenichstr. 28, D-91054 Erlangen, Germany d Geology and Geophysics Group, National Oceanography Centre, European Way, SO14 3 ZH Southampton, UK e Scripps Institution of Oceanography, UCSD, La Jolla, CA, United States of America blisher-authenticated version is av *: Corresponding author : David Van Rooij, Tel.: +32 9 2644583 ; fax: +32 9 2644967 ; email address : [email protected] Abstract : We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks.
    [Show full text]