Keys to Some Lepidopterous Larvae Found in Gardens and Homes in Hawaii*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae. -
Big Creek Lepidoptera Checklist
Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae -
Butterflies from the Middle Eocene: the Earliest Occurrence of Fossil Papilionoidea (Lepidoptera)
THE PEARCE- SELLARDS Sctks NUMBER 29 BUTTERFLIES FROM THE MIDDLE EOCENE: THE EARLIEST OCCURRENCE OF FOSSIL PAPILIONOIDEA (LEPIDOPTERA) Christopher J. Durden and Hugh Rose 1978 Texas Memorial Museum/2400 Trinity/Austin, Texas 78705 W. W. Newcomb, Director The Pearce-Sellards Series is an occasional, miscellaneous series of brief reports of museum and museum associated field investigations and other research. Its title seeks to commemorate the first two directors of the Texas Memorial Museum, now both deceased: J. E. Pearce and Dr. E. H. Sellards, professors of anthropology and geology respectively, of The University of Texas. A complete list of Pearce-Sellards papers, as well as other publica- tions of the museum, will be sent upon request. BUTTERFLIES FROM THE MIDDLE EOCENE: THE EARLIEST OCCURRENCE OF FOSSIL PAPILIONOIDEA (LEPIDOPTERA) 1 Christopher J. Durden 2 and Hugh Rose 3 ABSTRACT Three fossil butterflies recently collected from the Green River Shale of Colorado extend the known range of Rhopalocera eight to ten million years back, to 48 Ma. Praepapilio Colorado n. g., n. sp., and P. gracilis n. sp. are primitive Papilionidae related to the modern Baronia brevicornis Salvin, but they require a new subfamily, Praepapilioninae. Riodinella nympha n. g., n. sp. is a primitive member of the Lycaenidae, related to modern Ancyluris, Riodina, and Rhetus, in the tribe Riodinidi. INTRODUCTION With approximately 194,000 living species, the Lepidoptera is, after the Coleoptera with some 350,000, species, the second most diverse order of organisms. It is underrepresented in the fossil record (Scudder 1875, 1891, 1892; Handlirsch 1925;Mackay 1970;Kuhne 1973; Shields 1976). -
125 Variations in the Markings of Pieris Rapae (Pieridae
VOLUME 24, i'-'UMBER 2 125 VARIATIONS IN THE MARKINGS OF PIERIS RAPAE (PIERIDAE) INDUCED DUlUNG THE PUPAL STAGE JOHN M. KOLYER 55 Chimney Ridge Drive, Convent, New Jersey, U.S.A. Introduction The present work represents the conclusion of a study which has involved observations on the effects of feeding larvae certain chemicals (Kolyer, 1966) and on the effects of environmental factors (Kolyer, 1969) on the wing markings of the European cabbage butterfly Pieris rapae ( Linnaeus ) . Specific objects were to note variations in markings as a result of (1) reduced-temperature storage of pupae of various ages, as an extension of previous work (Kolyer, 1969), (2) brief, barely sublethal heating of pupae, and (3) exposure of pupae to short-wave ultraviolet (UV) radiation. Incidental observations, e.g. on larval disease and the yellow form of P. rapae, also are included. Experimental Procedures Rearing. Final instal' larvae were reared on an artificial diet at 79 ± 2°F and 45 ± 5% relative humidity under continuous cool white fluores cent light. Larval development was completed on cabbage leaves from refrigerated heads (see Kolyer, 1966); rearing room conditions were: 70- 81°F, approx. 20-33% reI. hum., diffuse sunlight (March 6-April 17, 1969, Convent, New Jersey) . Refrigeration of pupae. As in previous work (Kolyer, 1969), pupae were packed carefully along with facial tissues in fiber mailing cans, which were covered with polyethylene bags to exclude moisture and stored in a refrigerator at 32-36°F for 154-156 days (approx. 5 months). Heat treatment of pupae. Two test tubes, one inside the other, were immersed in hot water in a Dewar (vacuum-jacketed) vessel and allowed to equilibrate so that the temperature of the air within the inner tube ap proximated the temperature of the bath. -
Phylogeny and Evolution of Lepidoptera
EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution. -
Redalyc.Description of Recent Discovery of Anthocharis Damone
SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Drndic, E.; Radevski, D.; Miljevic, M.; Duric, M.; Popovic, M. Description of recent discovery of Anthocharis damone Boisduval, 1836 in Serbia and its distribution in Europe (Lepidoptera: Pieridae) SHILAP Revista de Lepidopterología, vol. 45, núm. 177, marzo, 2017, pp. 23-29 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45550375003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (177) marzo 2017: 23-29 eISSN: 2340-4078 ISSN: 0300-5267 Description of recent discovery of Anthocharis damone Boisduval, 1836 in Serbia and its distribution in Europe (Lepidoptera: Pieridae) E. Drndi c, D¯ . Radevski, M. Miljevi c, M. D¯ uri c & M. Popovi c Abstract Anthocharis damone Boisduval, 1836 is known from southern Italy, Greece, Republic of Macedonia, Albania and further in the Middle East. At the end of May and beginning of June 2015 it was recorded for the first time in Serbia. A single isolated colony was found 170 km NW from the northernmost known locality in Europe. This record made us review A. damone distribution in Europe, suggested its possibly wider range over the Balkans and increased the list of butterflies recorded in Serbia to a total of 200 species. KEY WORDS: Lepidoptera, Pieridae, Isatis tinctoria , conservation, Red List, Serbia. -
Colourful Butterfly Wings: Scale Stacks, Iridescence and Sexual Dichromatism of Pieridae Doekele G
158 entomologische berichten 67(5) 2007 Colourful butterfly wings: scale stacks, iridescence and sexual dichromatism of Pieridae Doekele G. Stavenga Hein L. Leertouwer KEY WORDS Coliadinae, Pierinae, scattering, pterins Entomologische Berichten 67 (5): 158-164 The colour of butterflies is determined by the optical properties of their wing scales. The main scale structures, ridges and crossribs, scatter incident light. The scales of pierid butterflies have usually numerous pigmented beads, which absorb light at short wavelengths and enhance light scattering at long wavelengths. Males of many species of the pierid subfamily Coliadinae have ultraviolet-iridescent wings, because the scale ridges are structured into a multilayer reflector. The iridescence is combined with a yellow or orange-brown colouration, causing the common name of the subfamily, the yellows or sulfurs. In the subfamily Pierinae, iridescent wing tips are encountered in the males of most species of the Colotis-group and some species of the tribe Anthocharidini. The wing tips contain pigments absorbing short-wavelength light, resulting in yellow, orange or red colours. Iridescent wings are not found among the Pierini. The different wing colours can be understood from combinations of wavelength-dependent scattering, absorption and iridescence, which are characteristic for the species and sex. Introduction often complex and as yet poorly understood optical phenomena The colour of a butterfly wing depends on the interaction of encountered in lycaenids and papilionids. The Pieridae have light with the material of the wing and its spatial structure. But- two main subfamilies: Coliadinae and Pierinae. Within Pierinae, terfly wings consist of a wing substrate, upon which stacks of the tribes Pierini and Anthocharidini are distinguished, together light-scattering scales are arranged. -
Insect Classification Standards 2020
RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification. -
Terrestrial Forest Management Plan for Palmyra Atoll
Prepared for The Nature Conservancy Palmyra Program Terrestrial Forest Management Plan for Palmyra Atoll Open-File Report 2011–1007 U.S. Department of the Interior U.S. Geological Survey Cover: Images showing native species of the terrestrial forest at Palmyra Atoll (on the left from top to bottom: red-footed boobies, an undescribed gecko, and a coconut crab). The forests shown are examples of Pisonia grandis forest on Lost Islet (above) and an example of coconut palm monoculture on Kaula Islet (below) at Palmyra Atoll. (Photographs by Stacie Hathaway, U.S. Geological Survey, 2008.) Terrestrial Forest Management Plan for Palmyra Atoll By Stacie A. Hathaway, Kathryn McEachern, and Robert N. Fisher Prepared for The Nature Conservancy Palmyra Program Open-File Report 2011–1007 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Hathaway, S.A., McEachern, K., and Fisher, R.N., 2011, Terrestrial forest management plan for Palmyra Atoll: U.S. Geological Survey Open-File Report 2011–1007, 78 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
BRUSH-FOOTED BUTTERFLIES OR FOUR-FOOTED BUTTERFLIES NYMPHALIDAE (RAFINESQUE, 1815) Classification Kingdom
BRUSH-FOOTED BUTTERFLIES OR FOUR-FOOTED BUTTERFLIES NYMPHALIDAE (RAFINESQUE, 1815) NATURAL HISTORY SUMMARY BY JACOB EGGE, PHD Classification Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Nymphalidae Description The family Nymphalidae includes some 6,000 species of butterflies. Most species in this family have greatly reduced forelegs and stand on only four legs. The vestigial forelegs have a brush-like set of hairs. Antennae always have two grooves on the underside. Many have brightly colored wings with cryptic undersides that help provide camouflage among leaves and brush. Familiar species in the family include the Monarch (Danaus plexippus) and fritillaries (Speyeria and Boloria). Distribution The family Nymphalidae has representative species on all continents except Antarctica, but they are most diverse in the Neotropics (DeVries 1987). Diet Nymphalid caterpillars feed exclusively on plants and many are host specific, while others are generalists. Adults generally feed on nectar from flowers they suck through a proboscis. However, some species feed on sap, fermenting fruit, or dung. (Hadley 2016). Habitat and Ecology Nyphalids inhabit a variety of habitats ranging from tropical rainforests to tundra environments of high elevation summits. Many species of Nymphalid, including the Monarch, have distasteful body fluids that deter predators. These distasteful compounds are derived from the plants they feed on as caterpillars. Most species are diurnal, with a few nocturnal species. Caterpillars are typically found associated with a particular host plant species or group of plants. Plant specializations range broadly across the family and include aster, violet, willow, elm, poplar, nettles, thistle, hackberry, and milkweed (Triplehorn and Johnson 2005). Reproduction and Life Cycle All butterflies undergo complete metamorphosis with both a larval (caterpillar) and pupal stage. -
The Lepidoptera Rapa Island
J. F. GATES CLA, The Lepidoptera Rapa Island SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1971 NUMBER 56 .-24 f O si % r 17401 •% -390O i 112100) 0 is -•^ i BLAKE*w 1PLATEALP I5 i I >k =(M&2l2Jo SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 56 j. F. Gates Clarke The Lepidoptera of Rapa Island SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1971 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. -
Lepidoptera: Autostichidae, Bedellidae, Batrachedridae, Carposinidae, Epermeniidae, Gelechiidae, Tineidae, Tortricidae)
©www.senckenberg.de/; download www.contributions-to-entomology.org/ CONTRIBUTIONS Beiträge zur Entomologie 66 (2): 347 - 370 20Ï6 © Senckenberg Gesellschaft für Naturforschung, 2016 SENCKENBERG New or poorly known Microlepidoptera from the Mascarenes (Lepidoptera: Autostichidae, Bedellidae, Batrachedridae, Carposinidae, Epermeniidae, Gelechiidae, Tineidae, Tortricidae) With 79 figures Ma k Bippus 1 1 193 bis CD41, 97419 La Possession, La Réunion. [email protected] Published on 2016-12-20 Summary Peragrarchis martirea (Carposinidae), Epermenia senaciae (Epermeniidae), Opogona transversata and Tineovertex flavilineata (Tineidae) are described as new species, and Idioglossa bigemma mascarena (Batrachedridae) as a new subspecies, from the Mascarene island of La Réunion, and Mauritius. Eleven species are new for the fauna of La Réun ion, two are new for the fauna of Mauritius. New host plants are reported for twelve species. Opogona reunionella G uillerm et, 2011 was found to be a new synonym of Opogona siccata (M ey rick , 1910), based on the study of type material and additional specimens. Key words Lepidoptera, Autostichidae, Bedellidae, Batrachedridae, Carposinidae, Epermeniidae, Gelechiidae, Tineidae, Tortricidae, Mascarenes, taxonomy, new species, new synonym, additional records Zusammenfassung Von den maskarenenischen Inseln La Réunion und Mauritius werden Peragrarchis martirea (Carposinidae), Eper menia senaciae (Epermeniidae), Opogona transversata und Tineovertex flavilineata (Tineidae) als neue Arten und Idioglossa bigemma mascarena (Batrachedridae) als neue Unterart beschrieben. Elf Arten sind neu für die Fauna von La Réunion, zwei für die Fauna von Mauritius. Für zwölf Arten wurden neue Futterpflanzen festgestellt. Opogona reunionella G uillerm et, 2011 erwies sich nach der Untersuchung des Typenmaterials und weiterer Exemplare als Synonym zu Opogona siccata (M eyrick, 1910).