Chapter 2. Site Characterisation, Plot Establishment and Mapping of Vascular Plants

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2. Site Characterisation, Plot Establishment and Mapping of Vascular Plants Chapter 2 – Site characterisation CHAPTER 2. SITE CHARACTERISATION, PLOT ESTABLISHMENT AND MAPPING OF VASCULAR PLANTS This chapter contains a description of the site chosen for the study and the rationale behind this choice. The plots are described with respect to soil and vascular plant communities. Maps of the standing trees with stems ≥10cm diameter are provided along with a list of the vascular plant species that included trees and large shrubs, but neither small shrubs, grasses nor ground-covering herbs. The numbers of the sedge Gahnia grandis and the manfern Dicksonia antarctica were also recorded. Tables and figures whose names contain the letter ‘A’ are in Appendix 1. Site location for field work All field work was conducted in native E. obliqua forest at the Warra LTER (long- term ecological research) site in southern Tasmania, west of Geeveston. Figure 2.1 depicts the approximate general location of the site. Fig. 2.1. Warra site location (from http://www.warra.com). The Warra LTER site is part of a world-wide network of long-term monitoring of ecological sites. Half of the site’s area of 15,900ha is State Forest, managed for multiple uses. The other half is within the Tasmanian World Heritage Area and is managed for conservation (Brown et al. 2001, Corbett and Balmer 2001). The overall aim of the Warra LTER site is to study the ecology of wet E. obliqua forest (Rolley 2001). The importance of this area within which this study was conducted is that it is long-term, has links with other LTER sites in different parts of Australia and the 15 Chapter 2 – Site characterisation world and is in native forest subjected to natural disturbance in proximity to areas subjected to silvicultural experiments. Thus, the data obtained could be used by Forestry Tasmania in assessing the effect of the different silviculture treatments on native forest. Plot selection and names Four plots of known fire history were chosen along the ‘Bird Track’ at the Warra LTER site (see Figure 2.2). Documented accounts, maps of fire history and fire scars on E. obliqua trees were used to determine age since fire (Turner et al. 2007). Although it is desirable to have replication, it was very difficult in the tall, wet E. obliqua native forest to find true replicates, as experienced by Turner et al. (2007). Furthermore, if it were possible to find replicate plots, the length of time and cost of labour to survey a statistically meaningful number of plots would have been beyond the scope of this project. Replication within each plot would be considered pseudoreplication (Hurlbert 1984). The advantages of the ‘Bird Track’ site were that it provided plots within walking distances of each other, with the same south-facing aspect, that were of a similar forest type, altitude, rainfall and temperature, soil type, and resulted from the natural disturbance of stand-replacing wildfires at different times. This ensured a high degree of similarity among the plots except for their wildfire histories. The ages of the plots since wildfire had been determined, respectively, as 200-300 years, 108 years, 72 years and a plot that was burnt twice, i.e. it was within a 108 year old forest that was burnt again 36 years later. The names given to the plots for convenience were Old growth, 1898, 1934 and 1898/1934, respectively. The ‘Old growth’ plot referred to a forest that had regenerated for 200-300 years since wildfire, and is not to be confused with an ‘old growth’ forest, the latter having various definitions, reflecting differing ethical, social and ecological perspectives (D. Lindenmayer, Old Forests New Management conference, Hobart, Tasmania, Feb. 2008). Additionally, it was discovered at the end of the study that the plot ‘1898’, believed to have been burnt in 1898, had in fact been subjected to a second fire in 1934. This fire affected only a portion of the plot so this effect was ignored for this part of the study and the name 1898 was retained for that plot. The consequences of the second fire are dealt with in the relevant subsequent chapters. ‘1934’ refers to the 16 Chapter 2 – Site characterisation 72 years since wildfire plot and ‘1898/1934’ refers to the plot burnt in both 1898 and 1934. During the analysis and presentation of graphs 1898/1934 and Old growth are, for ease of labelling, sometimes referred to as DB (meaning doubly burnt) and OG, respectively. The 1898 and 1934 plots were adjacent (within the buffer zone) to those chosen by Dr. P. Turner (1898S and 1934S respectively) for the Wildfire Chronosequence Study (Turner et al. 2007); the Old growth plot was 100m away from Turner’s old growth plot ‘OGS’ (P. Turner, pers. comm.). The 1898/1934 plot had no nearby counterpart in her study. Figure 2.2 is a magnified portion of the ‘Bird Track’ showing the plot locations. 1934 1898 1898/1934 Car park Old growth 500 m Fig. 2.2. Position of plots along the ‘Bird Track’, Warra LTER site. Site attributes of Warra LTER Mean annual precipitation for Warra is 1477mm, uniformly distributed throughout the year (Anon., Warra viewed 25 April 2007), Mean annual temperature is 7.9ºC, and mean monthly temperatures range from 3.5ºC to 12.8ºC (Anon., Warra viewed 25 April 2007), Dominant soils are derived from Jurassic dolerite and derived Quaternary slope deposits; however, soils based on Precambrian quartzite and dolomite also occur (Laffan 2001), Predominant forest type is wet sclerophyll dominated by Eucalyptus obliqua (Corbett and Balmer 2001). 17 Chapter 2 – Site characterisation Establishment of the four plots A 50x50m plot was measured out in each of the wildfire histories. Along two sides of the plot at the outer boundaries of A1-E1 and A5-E5, star pickets were placed at 10m intervals. Fibreglass rods marked the remaining corners of each 10x10m plot. Twine was strung from the star pickets up and down the plot but not across. The division into subplots measuring 10x10m (Figure 2.3) facilitated the mapping of the coarse woody debris and stags (see Chapter 3), soil sampling, and mapping of the vascular plants. A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3 A4 B4 C4 D4 E4 A5 B5 C5 D5 E5 Fig. 2.3. A schematic diagram of each 50x50m plot, divided into 25 10x10m subplots. Position and slope Latitude/longitude readings are GPS readings taken with a handheld GPS (eTrex® Garmin). Slope was assessed in degrees with a handheld Suunto® clinometer. Determination and mapping of vascular plant community in each of the four plots All vascular plant species were identified and named (Anon., Tasmanian Herbarium, viewed 18 November 2007). All living stems ≥10cm in diameter of each woody species were measured with a diameter tape and mapped in each subplot of each plot (Figure 2.4). Soil sampling in each of the four plots Each 50x50m plot was sampled in three widely separated subplots. Samples were taken using a bucket auger at 0-20cm, 20-40cm and 40-60cm depth at all positions 18 Chapter 2 – Site characterisation on each plot except for one sample where solid rock was encountered (in one of the 40-60cm depths in 1898/1934). The soil samples from each depth of the profile were placed in appropriately labelled plastic bags and taken back to the laboratory for physical description, pH and total phosphorus and total nitrogen analyses. Physical descriptions were done using the Munsell soil chart (Munsell 1992), pH measurements were made following the procedure in Rayment and Higginson (1992), Total phosphorus analysis was based on the molybdate blue method of Murphy and Riley (1962), Total nitrogen analysis was based on the indophenol blue method of Berthelot (1859) (fide Rayment and Higginson 1992). Results The site attributes, viz. position, slope, soil pH, N and P (Tables 2.1, 2.A1 and Fig. 2.A1) and vascular plant species list (Table 2.2), are presented for each plot separately. The distribution in each plot of the vascular plants with stem diameter ≥10cm is shown in Figure 2.4. Table 2.1. Site location, slope, soil pH, soil % total N and soil % total P. Old growth 1898 1934 1898/1934 Latitude/ S 43º 05.6′ S 43º 05.5′ S 43º 05.4′ S 43º 05.6′ longitude E 146º 38.5′ E 146º 38.8′ E 146º 38.5′ E 146º 39.0′ Slope, º 5.4 8.1 14.8 16.9 Soil pH 4.7 5.0 4.3 5.6 (average) Soil % total N 0-20cm 0.2406 0.2713 0.2685 0.2971 20-40cm 0.1248 0.1086 0.1056 0.1427 40-60cm 0.0672 0.0687 0.0701 0.1069 Soil % total P 0-20cm 0.0210 0.0184 0.0146 0.0184 20-40cm 0.0144 0.0091 0.0084 0.0100 40-60cm 0.0091 0.0077 0.0069 0.0086 19 Chapter 2 – Site characterisation The soil profiles The soil profiles (Table 2.A1) are close to two previously described soil types “15.3” and “15.4” (Grant et al. 1995), i.e. yellowish brown mottled clayey soils under wet forest and red-brown clayey soils under wet forests, respectively. These soil types are widespread where annual rainfall is above 1000mm. The soils are derived from Jurassic dolerite and Quaternary dolerite talus on low, rolling hills to steep mountains. Soil type “15.3” is imperfectly drained and supports wet sclerophyll forest containing species such as Eucalyptus regnans, E. obliqua, Pomaderris apetala, Olearia argophylla, Coprosma quadrifida and Polystichum proliferum.
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Vegetation Benchmarks Rainforest and Related Scrub
    Vegetation Benchmarks Rainforest and related scrub Eucryphia lucida Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPW Athrotaxis cupressoides open woodland: Sphagnum peatland facies Community Description: Athrotaxis cupressoides (5–8 m) forms small woodland patches or appears as copses and scattered small trees. On the Central Plateau (and other dolerite areas such as Mount Field), broad poorly– drained valleys and small glacial depressions may contain scattered A. cupressoides trees and copses over Sphagnum cristatum bogs. In the treeless gaps, Sphagnum cristatum is usually overgrown by a combination of any of Richea scoparia, R. gunnii, Baloskion australe, Epacris gunnii and Gleichenia alpina. This is one of three benchmarks available for assessing the condition of RPW. This is the appropriate benchmark to use in assessing the condition of the Sphagnum facies of the listed Athrotaxis cupressoides open woodland community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 10% - - - Large Trees - 6 20 5 Organic Litter 10% - Logs ≥ 10 - 2 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 1 Medium shrub/small shrub S 3 30 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 1 Mosses and Lichens ML 1 70 Total 5 8 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPW Athrotaxis cupressoides open woodland: Sphagnum facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Present as a sparse canopy Typical Understorey Species * Common Name LF Code Epacris gunnii coral heath S Richea scoparia scoparia S Richea gunnii bog candleheath S Astelia alpina pineapple grass MSR Baloskion australe southern cordrush MSR Gleichenia alpina dwarf coralfern GF Sphagnum cristatum sphagnum ML *This list is provided as a guide only.
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Cytotoxic C20 Diterpenoid Alkaloids from the Australian Endemic Rainforest Plant Anopterus Macleayanus Claire Levrier,†,‡ Martin C
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/jnp Cytotoxic C20 Diterpenoid Alkaloids from the Australian Endemic Rainforest Plant Anopterus macleayanus Claire Levrier,†,‡ Martin C. Sadowski,‡ Colleen C. Nelson,‡ and Rohan A. Davis*,† † Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia ‡ Australian Prostate Cancer Research Centre−Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4102, Australia *S Supporting Information ABSTRACT: In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4′-hydroxy-6α-acetoxya- nopterine (2), 4′-hydroxyanopterine (3), and 11α-benzoyla- nopterine (4), along with four known compounds, anopterine (5), 7β-hydroxyanopterine (6), 7β,4′-dihydroxyanopterine (7), and 7β-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1−8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1−8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay.
    [Show full text]
  • Plant Communities of Mt Barrow & Mt Barrow Falls
    PLANT COMMUNITIES OF MT BARROW & MT BARROW FALLS John B. Davies Margaret J. Davies Consultant Queen Victoria and Art and Plomley Foundation II Mt Barrow J.B. & M.J. (1990) of Mt Barrow and Mt Barrow No.2 © Queen Victoria and Art Wellington St., Launceston,Tasmania 1990 CONTENTS ACKNOWLEDGEMENTS 3 BACKGROUND 4 SURVEY MT BARROW 11 OF MT BARROW PLANT COMMUNITIES 14 AND THEIR RESERVATION COMPARISON THE VEGETATION AT 30 BARROW AND LOMOND BOTANICAL OF MT BARROW RESERVE 31 DESCRIPTION THE COMMUNITIES BARROW FALLS THEIR APPENDIX 1 36 APPENDIX 2­ MAP 3 39 APPENDIX 4 APPENDIX 5 APPENDIX 6­ SPECIES 49 ACKNOWLEDGEMENTS Thanks are due to a number of people for assistance with this project. Firstly administrative assistance was by the Director of the Victoria Museum and Art Gallery, Mr Chris TasselL assistance was Michael Body, Kath Craig Reid and Mary Cameron. crt>''Y'it>,nt" are also due to Telecom for providing a key to the on the plateau, the Department of Lands, Parks and for providing a transparency base map of the area, and to Mr Mike Brouder and Mr John Harris Commission), for the use of 1 :20,000 colour aerial photographs of the area. Taxonomic was provided by Cameron (Honorary Research Associate, Queen Victoria Museum and Art Gallery) who also mounted all the plant collected, and various staff of the Tasmanian Herbarium particularly Mr Alex Dr Tony Orchard, Mr D. 1. Morris and Dr Winifred Curtis. thanks are due to Dr Brad Potts (Botany Department, of Tasmania) for assistance with data and table production and to Prof Kirkpatrick and Environmental ..J'U'U'~;'" of Tasmania) for the use and word-processing.
    [Show full text]
  • Plants for Bees
    Plants for bees Acacia dealbata Silver Wattle Fast growing tree 6-15m high. Widespread in wet and dry forests. Bright yellow blossoms in early spring. Good shelter and an important bird habitat tree. Acacia sophorae Coastal Wattle Large spreading shrub or small tree to ~ 3m high. Found along coastal dunes. Tolerates coastal exposure and cold inland conditions but needs good drainage. Yellow flowers in Spring. Good screen or shelter plant. Acacia mearnsii Black Wattle Fast growing tree to ~ 10m. Yellow flowers in spring. Prefers a dry location in full sun. Can withstand extended dry periods. Good shade/shelter tree. Acacia melanoxylon Blackwood Large evergreen tree with a broad crown if grown in the open. Creamy yellow flowers in spring. Prefers a well drained position in full sun or semi-shade. Good timber, shade or shelter tree. Allocasuarina verticillata She Oak Hardy, small tree with weeping branches to ~ 10m high. Common along coasts and on dry rocky slopes inland. Tolerates very dry conditions. Good shelter or specimen tree. Acacia verticillata Prickly Moses A prickly shrub to ~3m. Common understorey shrub in wet and dry forests. Yellow flowers in spring. Prefers a moist, well drained location. Tolerates some shade. Good bird habitat. Anopterus glandulosus Native Laurel Endemic rainforest shrub to ~3m. Large, glossy green leaves with white bell shaped flowers in spring. Requires a moist, shady location. Good container, fernery plant. Aotus ericoides Golden Pea Small shrub to ~ 1m. Masses of golden yellow pea flowers with red centres in spring. Found in heath lands. Likes a sunny, moist, well drained spot. Very showy.
    [Show full text]
  • Flora Surveys Introduction Survey Method Results
    Hamish Saunders Memorial Island Survey Program 2009 45 Flora Surveys The most studied island is Sarah Results Island. This island has had several Introduction plans developed that have A total of 122 vascular flora included flora surveys but have species from 56 families were There have been few flora focused on the historical value of recorded across the islands surveys undertaken in the the island. The NVA holds some surveyed. The species are Macquarie Harbour area. Data on observations but the species list comprised of 50 higher plants the Natural Values Atlas (NVA) is not as comprehensive as that (7 monocots and 44 dicots) shows that observations for given in the plans. The Sarah and 13 lower plants. Of the this area are sourced from the Island Visitor Services Site Plan species recorded 14 are endemic Herbarium, projects undertaken (2006) cites a survey undertaken to Australia; 1 occurs only in by DPIPWE (or its predecessors) by Walsh (1992). The species Tasmania. Eighteen species are such as the Huon Pine Survey recorded for Sarah Island have considered to be primitive. There and the Millennium Seed Bank been added to some of the tables were 24 introduced species found Collection project. Other data in this report. with 9 of these being listed weeds. has been added to the NVA as One orchid species was found part of composite data sets such Survey Method that was not known to occur in as Tasforhab and wetforest data the south west of the state and the sources of which are not Botanical surveys were this discovery has considerably easily traceable.
    [Show full text]
  • 2016 Census of the Vascular Plants of Tasmania
    A CENSUS OF THE VASCULAR PLANTS OF TASMANIA, INCLUDING MACQUARIE ISLAND MF de Salas & ML Baker 2016 edition Tasmanian Herbarium, Tasmanian Museum and Art Gallery Department of State Growth Tasmanian Vascular Plant Census 2016 A Census of the Vascular Plants of Tasmania, Including Macquarie Island. 2016 edition MF de Salas and ML Baker Postal address: Street address: Tasmanian Herbarium College Road PO Box 5058 Sandy Bay, Tasmania 7005 UTAS LPO Australia Sandy Bay, Tasmania 7005 Australia © Tasmanian Herbarium, Tasmanian Museum and Art Gallery Published by the Tasmanian Herbarium, Tasmanian Museum and Art Gallery GPO Box 1164 Hobart, Tasmania 7001 Australia www.tmag.tas.gov.au Cite as: de Salas, M.F. and Baker, M.L. (2016) A Census of the Vascular Plants of Tasmania, Including Macquarie Island. (Tasmanian Herbarium, Tasmanian Museum and Art Gallery. Hobart) www.tmag.tas.gov.au ISBN 978-1-921599-83-5 (PDF) 2 Tasmanian Vascular Plant Census 2016 Introduction The classification systems used in this Census largely follow Cronquist (1981) for flowering plants (Angiosperms) and McCarthy (1998) for conifers, ferns and their allies. The same classification systems are used to arrange the botanical collections of the Tasmanian Herbarium and by the Flora of Australia series published by the Australian Biological Resources Study (ABRS). For a more up-to-date classification of the flora refer to The Flora of Tasmania Online (Duretto 2009+) which currently follows APG II (2003). This census also serves as an index to The Student’s Flora of Tasmania (Curtis 1963, 1967, 1979; Curtis & Morris 1975, 1994). Species accounts can be found in The Student’s Flora of Tasmania by referring to the volume and page number reference that is given in the rightmost column (e.g.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Downloading Or Purchasing Online At
    A Field Guide to Native Flora Used by Honeybees in Tasmania 1 © 2009 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 947 0 ISSN 1440-6845 A Field Guide to Native Flora Used by Honeybees in Tasmania Publication No. 09/149 Project No. PRJ-002933 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to the RIRDC Publications Manager on phone 02 6271 4165 Researcher Contact Details Name: Mark Leech of Brueckner Leech Consulting Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form.
    [Show full text]
  • Gardens and Stewardship
    GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.
    [Show full text]