Gene Family of Asteraceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Assessment of Helianthus Annuus (Sunflower)-Derived Ingredients As Used in Cosmetics
Safety Assessment of Helianthus annuus (Sunflower)-Derived Ingredients as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: March 7, 2016 Panel Meeting: March 31-April 1, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] 1 Distributed for comment only -- do not cite or quote Commitment & Credibility since 1976 MEMORANDUM To: CIR Expert Panel and Liaisons From: Lillian C. Becker, M.S. Scientific Analyst and Writer Ivan J. Boyer, PhD, DABT Senior Toxicologist Date: March 7, 2016 Subject: Helianthus annuus (Sunflower)-Derived Ingredients as Used in Cosmetics Attached is the tentative report of 13 Helianthus annuus (sunflower)-derived ingredients as used in cosmetics. [Helian122015Rep] All of these ingredients are derived from parts of the Helianathus annuus (sunflower) plant. The sunflower seed oils (with the exception of Ozonized Sunflower Seed Oil) were reviewed in the vegetable- derived oils report and are not included here. In December, 2015, the Panel issued an Insufficient Data Announcement with these data needs: • HRIPT of Hydrogenated Sunflower Seed Extract at 1% or greater • Method of manufacture, including clarification of the source material (whole plant vs “bark”), of Helianthus Annuus (Sunflower) Extract • Composition of these ingredients, especially protein content (including 2S albumin) Impurities The Council submitted summaries of HRIPTs and use studies of products containing Helianthus annuus (sunflower)-derived ingredients. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Verticillium Wilt of Vegetables and Herbaceous Ornamentals
Dr. Sharon M. Douglas Department of Plant Pathology and Ecology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8601 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes VERTICILLIUM WILT OF VEGETABLES AND HERBACEOUS ORNAMENTALS Verticillium wilt is a disease of over 300 SYMPTOMS AND DISEASE species throughout the United States. This DEVELOPMENT: includes a wide variety of vegetables and Symptoms of Verticillium wilt vary by host herbaceous ornamentals. Tomatoes, and environmental conditions. In many eggplants, peppers, potatoes, dahlia, cases, symptoms do not develop until the impatiens, and snapdragon are among the plant is bearing flowers or fruit or after hosts of this disease. Plants weakened by periods of stressful hot, dry weather. Older root damage from drought, waterlogged leaves are usually the first to develop soils, and other environmental stresses are symptoms, which include yellowing, thought to be more prone to infection. wilting, and eventually dying and dropping from the plant. Infected leaves can also Since Verticillium wilt is a common disease, develop pale yellow blotches on the lower breeding programs have contributed many leaves (Figure 1) and necrotic, V-shaped varieties or cultivars of plants with genetic lesions at the tips of the leaves. resistance—this has significantly reduced the prevalence of this disease on many plants, especially on vegetables. However, the recent interest in planting “heirloom” varieties, which do not carry resistance genes, has resulted in increased incidence of Verticillium wilt on these hosts. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Ndhf Sequence Evolution and the Major Clades in the Sunflower Family KI-JOONG KIM* and ROBERT K
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10379-10383, October 1995 Evolution ndhF sequence evolution and the major clades in the sunflower family KI-JOONG KIM* AND ROBERT K. JANSENt Department of Botany, University of Texas, Austin, TX 78713-7640 Communicated by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, June 21, 1995 ABSTRACT An extensive sequence comparison of the either too short or too conserved to provide adequate numbers chloroplast ndhF gene from all major clades of the largest of characters in recently evolved families. A number of alter- flowering plant family (Asteraceae) shows that this gene native genes have been suggested as potential candidates for provides -3 times more phylogenetic information than rbcL. phylogenetic comparisons at lower taxonomic levels (9). The This is because it is substantially longer and evolves twice as phylogenetic utility of one of these, matK, has been recently fast. The 5' region (1380 bp) ofndhF is very different from the demonstrated (10). Comparison of sequences of two chloro- 3' region (855 bp) and is similar to rbcL in both the rate and plast genomes (rice and tobacco), however, revealed only two the pattern of sequence change. The 3' region is more A+T- genes, rpoCl and ndhF, that are considerably longer and evolve rich, has higher levels of nonsynonymous base substitution, faster than rbcL (9, 11). We selected ndhF because it is longer and shows greater transversion bias at all codon positions. and evolves slightly faster than rpoCl (11), because rpoCl has These differences probably reflect different functional con- an intron that may require additional effort in DNA amplifi- straints on the 5' and 3' regions of nduhF. -
Effects of Nanosilver Treatments on Vase Life of Cut Flowers of Carnation (Dianthus Caryophyllus Cv
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Journal of Advanced Laboratory Research in Biology www.sospublication.co.in Journal of Advanced Laboratory Research in Biology We- together to save yourself society e-ISSN 0976-7614 Volume 2, Issue 2, April 2011 Research Article Effects of Nanosilver Treatments on Vase Life of Cut Flowers of Carnation (Dianthus caryophyllus cv. 'White Liberty’) Yeganeh Basiri, Hossein Zarei* and Kambiz Mashayekhi *Horticulture Department of Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, Iran. Abstract: Carnation (Dianthus caryophyllus) is one of the most cultivated flowers around the world for producing of cut flowers. This paper assessed the efficacy of nanosilver (NS) as an antibactericidal agent in extending the vase life of cut flowers of carnation (Dianthus caryophyllus L.). Vase solutions were consisting of NS concentrations in 5, 10, 20, 40 and 80 ppm included sucrose 6 percent added in all treatments. Results showed that all NS treatments were combined with sugar extended the vase life of carnation flowers significantly compared with control. Observations indicated that NS treatments inhibited the growth of microorganisms in vase solution and considerably extend the vase life of cut flowers of carnation. Keywords: Carnation (Dianthus caryophyllus), Cut flowers, Nanosilver (NS), Vase Life, Post-Harvest. 1. Introduction al., 2006), and microbes are a common cause of stem end blockage (Van Doorn, 1997). Carnations and Pinks are common or garden names Many agents have been used in cut flowers vase for various species of the genus Dianthus, which solutions, extends the vase life by improving water belongs to the Caryophyllaceae family (Galbally and uptake. -
Chaptalia Hermogenis (Asteraceae: Mutisieae), a New Species from the Brazilian Atlantic Rain Forest Author(S): Marta Dias De Moraes Source: Novon, Vol
Chaptalia hermogenis (Asteraceae: Mutisieae), a New Species from the Brazilian Atlantic Rain Forest Author(s): Marta Dias de Moraes Source: Novon, Vol. 8, No. 2 (Summer, 1998), pp. 173-175 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3391991 Accessed: 17-06-2015 18:33 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Novon. http://www.jstor.org This content downloaded from 143.106.108.149 on Wed, 17 Jun 2015 18:33:02 UTC All use subject to JSTOR Terms and Conditions Chaptalia hermogenis(Asteraceae: Mutisieae), a New Species from the Brazilian Atlantic Rain Forest Marta Dias de Moraes Departamento de Botanica, I.B., UNICAMP, Caixa Postal 6109, Campinas 13083-970, SP, Brazil ABSTRACT. Chaptalia hermogenis(sect. Archi- anyformal taxonomic changes. The cladogrampre- chaptalia), currentlyknown only froma montane sentedby Hansen (1990) is based onlyon 15 char- forestin the AtlanticRain Forestregion of south- acters and some of these are polymorphicin his eastern Brazil, is described and illustrated.The terminaltaxa. For example,the character"scape" new species is comparedwith the closely similar was consideredbracteate in the genus Chaptalia, C. -
Morphological Characters Add Support for Some Members of the Basal Grade of Asteraceae
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 568–586. With 9 figures Morphological characters add support for some members of the basal grade of Asteraceae NÁDIA ROQUE1* and VICKI A. FUNK2 1Instituto de Biologia, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-110, Brazil 2US National Herbarium, Department of Botany, National Museum of Natural History, Smithsonian Institution MRC 166, Washington DC, 20013-7012, USA Received 17 November 2011; revised 3 April 2012; accepted for publication 1 October 2012 Recent molecular studies in Asteraceae have divided tribe Mutisieae (sensu Cabrera) into 13 tribes and eight subfamilies. Each of the major clades is well supported but the relationships among them are not always clear. Some of the new taxa are easily characterized by morphological data but others are not, chief among the latter being three subfamilies (Stifftioideae, Wunderlichioideae and Gochnatioideae) and the tribe Hyalideae. To under- stand evolution in the family it is critical to investigate potential morphological characters that can help to evaluate the basal lineages of the Asteraceae. The data for this study were taken from 52 species in 24 genera representing the basal groups in the family. Many characters were examined but most of the useful ones were from reproductive structures. Several apomorphies supported a few of the clades. For instance, members of subfamily Wunderlichioideae (Hyalideae and Wunderlichieae) share predominantly ten-ribbed achenes and members of Wunderlichioideae + Stifftioideae share two synapomorphies: 100–150 (200) pappus elements, arranged in (three) four or five series. These apomorphies can be viewed as an indication of a sister-group relationship between the two subfamilies as the placement of Stifftieae was not well resolved by the molecular data. -
Artemisia Annua L.)
New Crop FactSHEET www.hort.purdue.edu/newcrop/cropfactsheets/artemisia.pdf Annual Wormwood (Artemisia annua L.) Contributors: Jorge Ferreira & Jules Janick Copyright © 2009. All Rights Reserved. Quotation from this document should cite and acknowledge the contributors. 1. Common Names 2. Scientific Names 3. Uses 4. Origin 5. Crop Status 1. Toxicities 2. Traditional Medicinal Uses 6. Botany 1. Taxonomy 2. Morphology and Floral Biology 3. Ecology 4. Secondary Metabolites 7. Crop Culture (Horticulture) 8. Horticulture 1. In vitro Production 2. Field Production 9. Germplasm 10. Key References 11. Selected Experts Common Names English: annual wormwood, sweet annie, sweet wormwood Chinese: qinghao, huag hua hao Scientific Names Species: Artemisia annua L. Family: Asteraceae (Compositae) Uses Traditional and Artisanal Used traditionally in China to treat fevers and hemorrhoids. Used in the crafting of aromatic wreaths, as a flavoring for spirits such as vermouth, and as a source of essential oils for the perfume industry. Human (pharmacological and antioxidant activities) Mainly as the source of artemisinin (qinghaosu), an important natural sesquiterpene lactone with antimalarial effect against susceptible and multi-drug resistant Plasmodium spp. Current research also shows that artemisinin drugs are effective against cancer, Leishmania (Yang and Liew, 1993; Sen et al., 2007), Trypanosoma (Mishina et al., 2007), and some viruses (Khan et al., 1991; Li et al., 2005). In addition, A. annua has a high content of flavonoid compounds which are responsible for its high antioxidant activity. There are potential uses of the Artemisia annua plant extracts for humans and livestock based on the synergistic effects of flavonoids, artemisinin precursors, etc., including antimalarial effects reported for the A. -
Pollen Morphology of Tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae (Subfamily Asteroideae) of Compositae from Egypt
American Journal of Plant Sciences, 2011, 2, 120-133 doi:10.4236/ajps.2011.22014 Published Online June 2011 (http://www.SciRP.org/journal/ajps) Pollen Morphology of Tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae (Subfamily Asteroideae) of Compositae from Egypt Ahmed Kamal El-Deen Osman Faculty of Science, Botany Department, South Valley University, Qena, Egypt. Email: [email protected] Received October 10th, 2010; revised December 9th, 2010; accepted December 20th, 2010. ABSTRACT POLLEN morphology of twenty five species representing 12 genera of tribes Gnaphalieae, Helenieae, Plucheeae and Senecioneae (Asteroideae: Asteraceae) was investigated using light and scanning electron microscopy. The genera are Phagnalon, Filago, Gnaphalium, Helichrysum, Homognaphalium, Ifloga, Lasiopogon, Pseudognaphalium, Flaveria, Tagetes, Sphaeranthus and Senecio. Two pollen types were recognized viz. Senecio pollen type and Filago pollen type. Description of each type, a key to the investigated taxa as well as LM and SEM micrographs of pollen grains are pro- vided. Keywords: Pollen, Morphology, Asteroideae, Asteraceae, Egypt 1. Introduction ture involves the foot layer and the outer layer of the endexine and the endoaperture involves the inner layer of Gnaphalieae, Helenieae, Plucheeae and Senecioneae (As- the endoxine. The intine is thickened considerably in teroideae: Asteraceae) are of the well represented tribes Anthemideae near the aperture. Reference [8] described in Egypt, where 12 genera with about thirty five species are native in -
Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.