Evaluation of the Fate and Transport of Methanol in the Environment

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of the Fate and Transport of Methanol in the Environment EVALUATION OF THE FATE AND TRANSPORT OF METHANOL IN THE ENVIRONMENT Prepared For: American Methanol Institute 800 Connecticut Avenue, NW, Suite 620 Washington, DC 20006 Prepared By: Malcolm Pirnie, Inc. 180 Grand Avenue, Suite 1000 Oakland, California 94612 JANUARY 1999 3522-002 TABLE OF CONTENTS Page EXECUTIVE SUMMARY .............................................................................................ES-1 1.0 BACKGROUND .................................................................................................... 1 1.1 Purpose and Scope of Report........................................................................ 1 1.2 Introduction and History of Use ................................................................... 1 1.3 Methanol Production..................................................................................... 3 1.4 Chemical and Physical Properties................................................................. 4 1.5 Release Scenarios ......................................................................................... 5 1.6 Fate in the Environment ............................................................................... 7 2.0 PARTITIONING OF METHANOL IN THE ENVIRONMENT........................... 9 2.1 Methanol Partitioning Between Environmental Compartments .................. 9 2.2 Air/Water Partitioning.................................................................................. 9 2.3 Soil/Water Partitioning................................................................................. 10 2.4 LNAPL Dissolution...................................................................................... 10 2.5 Comingling/Cosolvency Effects................................................................... 12 3.0 FATE AND TRANSPORT OF METHANOL IN THE ENVIRONMENT........... 14 3.1 Soil and Groundwater Release ..................................................................... 14 3.1.1 Sources of Methanol in Soil and Groundwater.................................. 14 3.1.2 Losses of Methanol in Soil and Groundwater ................................... 15 3.1.2.1 Biodegradation...................................................................... 15 3.1.2.1.1 Presence of Indigenous Methanol-Degrading Microbes ................................................................. 15 3.1.2.1.2 Availability of Electron Acceptors ......................... 17 3.1.2.1.3 Availability of Nutrients ......................................... 18 3.1.2.1.4 Adequate pH and Temperature Levels ................... 18 3.1.2.1.5 Reports of Methanol Biodegradation Under Various Redox Conditions...................................... 19 3.1.2.2 Adsorption............................................................................ 22 3.1.2.3 Volatilization from Groundwater ......................................... 22 3.2 Surface Water ............................................................................................... 23 3.2.1 Sources of Methanol in Surface Water .............................................. 23 3.2.2 Losses of Methanol in Surface Water................................................ 23 3.2.2.1 Biodegradation...................................................................... 24 3.2.2.2 Abiotic Degradation.............................................................. 24 3.2.2.3 Bioaccumulation ................................................................... 25 3.2.2.4 Volatilization ........................................................................ 25 3.3 Methanol / BTEX Comingled Plumes .......................................................... 26 3.4 Conclusions................................................................................................... 27 4.0 METHANOL ADDITIVES .................................................................................... 28 4.1 Purpose and Background of Additives ......................................................... 28 4.2 Fate and Transport of Three Known Additives............................................ 28 Technical Memorandum i MALCOLM PIRNIE, INC. 4.2.1 Luminosity........................................................................................... 28 4.2.2 Taste .................................................................................................... 29 4.2.3 Colorant............................................................................................... 31 4.3 Conclusion .................................................................................................... 32 5.0 REMEDIATION AND TREATMENT................................................................. 33 5.1 Remediation for Methanol ........................................................................... 33 5.2 Impetus for Drinking Water Treatment........................................................ 33 5.3 Air Stripping................................................................................................. 34 5.4 Activated Carbon.......................................................................................... 34 5.5 Advanced Oxidation..................................................................................... 35 5.6 Membranes ................................................................................................... 36 5.7 Biological Treatment (Biologically Activated Filters)................................. 36 5.8 Conclusions.................................................................................................. 37 6.0 METHANOL TOXICOLOGY............................................................................... 38 6.1 Health Effects of Methanol ......................................................................... 38 6.1.1 Inhalation............................................................................................ 38 6.1.2 Ingestion ............................................................................................. 40 6.1.3 Dermal Exposure................................................................................ 40 6.2 Aquatic Toxicity........................................................................................... 41 6.2.1 Toxicity of Methanol to Microbial Populations ................................ 42 7.0 FUTURE RESEARCH NEEDS ............................................................................. 43 8.0 CONCLUSIONS..................................................................................................... 45 8.1 Fate and Transport ......................................................................................... 45 8.2 Methanol Additives........................................................................................ 45 8.3 Remediation and Treatment.......................................................................... 46 8.4 Human and Aquatic Toxicity........................................................................ 46 9.0 ACKNOWLEDGEMENTS.................................................................................... 48 10.0 REFERENCES ........................................................................................................ 49 LIST OF TABLES Table No. Description Page Technical Memorandum ii MALCOLM PIRNIE, INC. 1-1 Global Methanol Capacity and Demand............................................................ 3 1-2 A Summary of Physical and Chemical Properties of Methanol, Gasoline (BTEX), and Benzene......................................................................... 5 1-3 Estimated Releases of Methanol for the United States...................................... 6 1-4 Estimated Half-Lives of Methanol in the Environment..................................... 7 2-1 Effects of Methanol on Aqueous BTEX Solubility ........................................... 13 3-1 Selected Types of Aerobic and Anaerobic Respiration Involved In Microbial Metabolism of Organic Matter .......................................................................... 16 3-2 Comparative Rate Constants for Anaerobic and Aerobic Degradation............. 19 3-3 Comparative Values of Octanol-Water Coefficients and Bioconcentration Factors ................................................................................... 25 4-1 Select Chemical and Physical Properties of Potential Luminosity Additives ... 29 4-2 Select Chemical and Physical Properties of Bitterant Additives....................... 30 4-3 Select Chemical and Physical Properties of Colorant Additives....................... 31 6-1 Hazard Summary .............................................................................................. 38 6-2 Methanol Toxicity Exposure Limits.................................................................. 39 6-3 Lethal Doses of Methanol in Rats and Rabbits.................................................. 40 6-4 Reported Median Lethal and Median Effective Concentrations for Methanol. 41 6-5 Biological Effects of Methanol on Various Microorganisms as Measured by the Toxicity Threshold from a cell Multiplication Inhibition Test............... 42 LIST OF FIGURES Figure No. Description Page 3-1 Methane Oxidation Pathway of Methanotrophic microorganisms.................... 16 Technical Memorandum iii MALCOLM PIRNIE, INC. EXECUTIVE SUMMARY The purpose of this report is to summarize the existing information regarding methanol— its fate and transport in the environment and potential impacts, if any, on human health and the environment. Pure methanol (M100) which is expected to be used in fuel cell vehicles
Recommended publications
  • US EPA Inert (Other) Pesticide Ingredients
    U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs.
    [Show full text]
  • Methanol Interim AEGL Document
    INTERIM 1: 1/2003 INTERIM 2: 2/2005 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) METHANOL (CAS Reg. No. 67-56-1) For NAS/COT Subcommittee for AEGLs February 2005 METHANOL Interim 2: 2/2005 PREFACE Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic chemicals. AEGLs represent threshold exposure limits for the general public and are applicable to emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and AEGL-1 levels as appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is believed that the recommended exposure levels are applicable to the general population including infants and children, and other individuals who may be sensitive or susceptible. The three AEGLs have been defined as follows: AEGL-1 is the airborne concentration (expressed as ppm or mg/m;) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL-2 is the airborne concentration (expressed as ppm or mg/m;) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects, or an impaired ability to escape.
    [Show full text]
  • Methanol: Toxicological Overview
    Methanol Toxicological Overview Key Points Kinetics and metabolism readily absorbed by all routes and distributed in the body water undergoes extensive metabolism, but small quantities are excreted unchanged by the lungs and in the urine Health effects of acute exposure methanol is toxic following ingestion, inhalation or dermal exposure exposure may initially result in CNS depression, followed by an asymptomatic latent period metabolic acidosis and ocular toxicity, which may result in blindness, are subsequent manifestations of toxicity coma and death may occur following substantial exposures long-term effects may include blindness and, following more substantial exposures, permanent damage to the CNS Health effects of chronic exposure long-term inhalation exposure to methanol has resulted in headaches and eye irritation in workers methanol is considered not to be a mutagen or carcinogen in humans methanol is considered not to be a reproductive toxicant in humans PHE publications gateway number: 2014790 Published: August 2015 Compendium of Chemical Hazards: Methanol Summary of Health Effects Methanol may be acutely toxic following inhalation, oral or dermal exposure. Acute methanol toxicity often follows a characteristic series of features; initially central nervous system (CNS) depression and gastrointestinal tract (GI) irritation may be observed. This is typically followed by a latent period of varying duration from 12–24 hours and occasionally up to 48 hours. Subsequently, a severe metabolic acidosis develops with nausea, vomiting and headache. Ocular toxicity ranges from photophobia and misty or blurred vision to markedly reduced visual acuity and complete blindness following high levels of exposure. Ingestion of as little as 4–10 mL of methanol in adults may cause permanent damage.
    [Show full text]
  • S. 1110, the Engine Coolant and Antifreeze Bittering Agent Act of 2005
    S. HRG. 109–377 S. 1110, THE ENGINE COOLANT AND ANTIFREEZE BITTERING AGENT ACT OF 2005 HEARING BEFORE THE SUBCOMMITTEE ON CONSUMER AFFAIRS, PRODUCT SAFETY, AND INSURANCE OF THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED NINTH CONGRESS FIRST SESSION JULY 18, 2005 Printed for the use of the Committee on Commerce, Science, and Transportation ( U.S. GOVERNMENT PRINTING OFFICE 27–356 PDF WASHINGTON : 2006 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 VerDate 0ct 09 2002 12:59 May 08, 2006 Jkt 027356 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\WPSHR\GPO\DOCS\27356.TXT JACKF PsN: JACKF SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED NINTH CONGRESS FIRST SESSION TED STEVENS, Alaska, Chairman JOHN MCCAIN, Arizona DANIEL K. INOUYE, Hawaii, Co-Chairman CONRAD BURNS, Montana JOHN D. ROCKEFELLER IV, West Virginia TRENT LOTT, Mississippi JOHN F. KERRY, Massachusetts KAY BAILEY HUTCHISON, Texas BYRON L. DORGAN, North Dakota OLYMPIA J. SNOWE, Maine BARBARA BOXER, California GORDON H. SMITH, Oregon BILL NELSON, Florida JOHN ENSIGN, Nevada MARIA CANTWELL, Washington GEORGE ALLEN, Virginia FRANK R. LAUTENBERG, New Jersey JOHN E. SUNUNU, New Hampshire E. BENJAMIN NELSON, Nebraska JIM DEMINT, South Carolina MARK PRYOR, Arkansas DAVID VITTER, Louisiana LISA J. SUTHERLAND, Republican Staff Director CHRISTINE DRAGER KURTH, Republican Deputy Staff Director DAVID RUSSELL, Republican Chief Counsel MARGARET L. CUMMISKY, Democratic Staff Director and Chief Counsel SAMUEL E.
    [Show full text]
  • Denatonium Capsaicinate and Methods of Producing the Same
    Europäisches Patentamt *EP001015418B1* (19) European Patent Office Office européen des brevets (11) EP 1 015 418 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 237/04, A01N 37/44, of the grant of the patent: A61K 31/165, C09D 7/12 26.05.2004 Bulletin 2004/22 (86) International application number: (21) Application number: 98937289.1 PCT/US1998/015836 (22) Date of filing: 31.07.1998 (87) International publication number: WO 1999/015495 (01.04.1999 Gazette 1999/13) (54) DENATONIUM CAPSAICINATE AND METHODS OF PRODUCING THE SAME DENATONIUM CAPSAICINAT UND VERFAHREN ZU IHRER HERSTELLUNG DENATONIUM CAPSAICINATE ET SES METHODES DE PRODUCTION (84) Designated Contracting States: • ROITBERG, Michael AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Highland Park, NJ 08904 (US) MC NL PT SE (74) Representative: Guerre, Dominique et al (30) Priority: 19.09.1997 US 929621 Cabinet Germain et Maureau, 12, rue Boileau, (43) Date of publication of application: BP 6153 05.07.2000 Bulletin 2000/27 69466 Lyon Cedex 06 (FR) (73) Proprietor: Burlington Bio-Medical & Scientific (56) References cited: Corp. EP-A- 0 458 177 WO-A-94/02558 Farmingdale, NY 11735-1718 (US) GB-A- 2 097 791 US-A- 4 005 038 US-A- 4 661 504 US-A- 4 997 853 (72) Inventors: US-A- 5 008 289 • BLUM, Melvin Wantagh, NY 11794 (US) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • METHANOL 6 (CAS Reg
    1 INTERIM 1: 1/2003 2 INTERIM 2: 2/2005 3 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS 4 (AEGLs) 5 METHANOL 6 (CAS Reg. No. 67-56-1) 7 For 8 NAS/COT Subcommittee for AEGLs 9 February 2005 METHANOL Interim 2: 2/2005 10 PREFACE 11 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the 12 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances 13 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and 14 other scientific data and develop AEGLs for high priority, acutely toxic chemicals. 15 AEGLs represent threshold exposure limits for the general public and are applicable to emergency 16 exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and AEGL-1 levels as 17 appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 18 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is believed that the 19 recommended exposure levels are applicable to the general population including infants and children, and 20 other individuals who may be sensitive or susceptible. The three AEGLs have been defined as follows: 21 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it 22 is predicted that the general population, including susceptible individuals, could experience notable 23 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling 24 and are transient and reversible upon cessation of exposure.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,150,782 B2 Lee Et Al
    US009 150782B2 (12) United States Patent (10) Patent No.: US 9,150,782 B2 Lee et al. (45) Date of Patent: Oct. 6, 2015 (54) FLUORESCENT TRACER FOR (56) References Cited WATER-SOLUBLE FILMS, RELATED METHODS, AND RELATED ARTICLES U.S. PATENT DOCUMENTS (71) Applicant: MONOSOL, LLC, Merrillville,- - - - IN (US) 2.477,3832,220,099 A 11/19407, 1949 GuentherLewis et al. (72) Inventors: David M. Lee, Crown Point, IN (US); (Continued) Stephen Bullock, Chicago, IL (US); Nicholas Zeese, Michigan City, IN (US) FOREIGN PATENT DOCUMENTS (73) Assignee: MONOSOL, LLC, Merrillville,- - - - IN (US) EP OO791680 197434 A2 10,8, 19971986 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. Dye Tracing, Wikipedia Entry, downloaded from the Internet at (21) Appl. No.: 14/562,148 <http://en.wikipedia.org/wiki/Dye tracing> (page last modifed Apr. 26, 2014). (22) Filed: Dec. 5, 2014 (Continued) (65) Prior Publication Data Primary Examiner — Kiho Kim US 2015/O159082 A1 Jun. 11, 2015 (74) Attorney, Agent, or Firm — Marshall, Gerstein & Borun LLP Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 61/912,689, filed on Dec. Disclosed herein are fluorescent tracer compositions and 6, 2013. water-soluble polymer compositions containing fluorescent s compounds for tracing one or more components in the poly (51) Int. Cl. mer compositions. More particularly, the disclosure relates to GOIN 2L/64 (2006.01) fluorescent tracer compositions including a fluorophore and a C09K II/02 (2006.01) bitterant aversive component to be incorporated into a water soluble polymer composition Such as a water-soluble film.
    [Show full text]
  • A Case of Intentional Methanol Ingestion Sarah Gilligan MD, MS, Devin Horton MD Department of Internal Medicine, University of Utah, Salt Lake City
    A Case of Intentional Methanol Ingestion Sarah Gilligan MD, MS, Devin Horton MD Department of Internal Medicine, University of Utah, Salt Lake City To understand the complications and management of • Any methanol ingestion of more than 1 mg/kg may be • Ophtholmalogic manifestations can include methanol toxicity. lethal. mydriasis, retinal edema leading to retinal sheen, afferent pupillary defect, and, most commonly, toxic • Methanol itself is relatively non-toxic, causing only CNS optic neuropathy. depression; the more severe manifestations of methanol History of Present Illness toxicity are related to the breakdown product formic acid • Studies have shown the optimal treatment of toxic or formate. optic neuropathy is high dose solumedrol followed • 41 year old female with depression, seizure disorder, by a prednisone taper. alcohol abuse, and history of multiple suicide attempts • Metabolism of methanol: alcohol dehydrogenase oxidizes presented to the emergency department reporting that methanol to form formaldehyde which is then oxidized to • It is important to assess the mental health of she had ingested anti-freeze and alcohol and inhaled formic acid. Formic acid is oxidized to non-toxic carbon patients treated for methanol ingestion to gasoline in an attempt to commit suicide. dioxide and water by folate dependent reactions. determine intent and risk of additional self-harm. Physical Exam • Initial manifestations of methanol overdose can be mild • Successful treatment of methanol ingestion requires • Normal vital signs confusion and the appearance of intoxication. early recognition and aggressive multifactorial • Mild suprapubic tenderness medical management aimed at decreasing the levels • Laboratory testing classically shows significant metabolic • Slurred speech and inappropriate affect but alert and of methanol and its metabolites and preventing acidosis with extremely high anion gap and high osmolar answer questions long-term end organ damage.
    [Show full text]
  • Methanol Toxicity Outbreak: When Fear of COVID-19 Goes Viral
    PostScript LETTER in several other centres throughout the Patient and public involvement Patients and/or Emerg Med J: first published as 10.1136/emermed-2020-209886 on 15 May 2020. Downloaded from country during this period. the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer Unlike prior outbreaks, the current Methanol toxicity outbreak: to the Methods section for further details. outbreak of methanol poisoning appears Patient consent for publication Not required. when fear of COVID-19 to be due to the belief that consumption of disinfectants and sanitizers, specif- Provenance and peer review Not commissioned; goes viral internally peer reviewed. ically, alcohol, would be beneficial in preventing the COVID-19 infection. This This article is made freely available for use in Dear editor accordance with BMJ’s website terms and conditions is supported by several cases of methanol for the duration of the covid-19 pandemic or until Methanol ingestion can be a highly poisoning in children resulting from a otherwise determined by BMJ. You may use, download lethal poisoning; methanol is metabolised desperate attempt by parents to prevent and print the article for any lawful, non- commercial to formaldehyde and formic acid, which or cure the infection. When facing a purpose (including text and data mining) provided that all copyright notices and trade marks are retained. are extremely toxic to the central nervous serious health threat, refractory to the system and the gastrointestinal tract available remedies, such irrational deci- © Author(s) (or their employer(s)) 2020. No commercial re- use.
    [Show full text]
  • WO 2019/014655 Al 17 January 2019 (17.01.2019) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/014655 Al 17 January 2019 (17.01.2019) W !P O PCT (51) International Patent Classification: A61Q 5/02 (2006.01) A61Q 19/10 (2006.01) (21) International Application Number: PCT/US20 18/042 192 (22) International Filing Date: 14 July 2018 (14.07.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/532,364 14 July 2017 (14.07.2017) US (71) Applicant: CLEANSPOT, INC. [US/US]; 5901 Indian School Road NE, Albuquerque, NM 871 10 (US). (72) Inventors: CORBITT, Thomas, S.; 5901 Indian School Road NE, Albuquerque, NM 871 10 (US). CALL, Charles, J.; 5901 Indian School Road NE, Albuquerque, NM 871 10 (US). CHAVEZ, Ana, M.; 5901 Indian School Road NE, Albuquerque, NM 871 10 (US). (74) Agent: CHELLAPPA, Anand, S.; Ip Tekk, LLC, 8100 Wyoming Blvd NE, Suite M4, #339, Albuquerque, NM 871 13 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Based Hand Sanitizer Products During the Public Health Emergency (COVID-19)
    Contains Nonbinding Recommendations Temporary Policy for Manufacture of Alcohol for Incorporation Into Alcohol- Based Hand Sanitizer Products During the Public Health Emergency (COVID-19) Guidance for Industry March 2020 Updated February 10, 2021 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Pharmaceutical Quality/Manufacturing Standards (CGMP)/Over-the-Counter (OTC) Preface Public Comment This guidance is being issued to address the Coronavirus Disease 2019 (COVID-19) public health emergency. This is being implemented without prior public comment because FDA has determined that prior public participation for this guidance is not feasible or appropriate (see section 701(h)(1)(C)(i) of the Federal Food, Drug, and Cosmetic Act (FD&C Act) and 21 CFR 10.115(g)(2)). This guidance document is being implemented immediately, but it remains subject to comment in accordance with the Agency’s good guidance practices. Comments may be submitted at any time for Agency consideration. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. Submit electronic comments to https://www.regulations.gov. All comments should be identified with the docket number FDA-2020-D-1106 and complete title of the guidance in the request. Additional Copies Additional copies are available from the FDA web page titled “ COVID-19-Related Guidance Documents for Industry, FDA Staff, and Other Stakeholders,” available at https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/coronavirus-disease- 2019-covid-19, and from the FDA web page “Hand Sanitizers | COVID-19” available at: http://wcms-internet.fda.gov/drugs/coronavirus-covid-19-drugs/hand-sanitizers-covid-19.
    [Show full text]
  • Coagulation Treatment to Remove Denatonium Benzoate
    COAGULATION TREATMENT TO REMOVE DENATONIUM BENZOATE FROM WATER Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Hussein Alaydamee Dayton, Ohio May 2017 COAGULATION TREATMENT TO REMOVE DENATONIUM BENZOATE FROM WATER Name: Alaydamee, Hussein Hantoosh APPROVED BY: ___________________________ _________________________ Kenya Crosson, Ph.D. Kevin J. Myers, D.Sc., P.E. Advisory Committee Chairman Professor, Graduate Chemical Associate Professor Engineering Program Coordinator Department of Civil and Department of Chemical and Environmental Engineering and Materials Engineering Engineering Mechanics ________________________ Erick S. Vasquez, Ph.D. Assistant Professor Department of Chemical and Materials Engineering ________________________ ________________________ Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas Ph.D., M.A, P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Hussein Hantoosh Alaydamee All rights reserved 2017 iii ABSTRACT COAGULATION TREATMENT TO REMOVE DENATONIUM BENZOATE FROM WATER Name: Alaydamee, Hussein Hantoosh University of Dayton Advisor: Dr. Kenya Crosson The bittering agent denatonium benzoate, DB, was mandated by the U.S. House of Representatives (H.R. 615) to be added to antifreeze containing more than 10% ethylene glycol at 30-50ppm in order to prevent accidental poisoning. 30-ppm DB concentration in water makes it unpalatable. This research addressed the optimal doses of alum and ferric chloride, and impact of water quality conditions such as pH, ionic strength, turbidity, and alkalinity on DB removal from water. Coagulation aids such as kaolin and bentonite were studied for their impact on DB removal.
    [Show full text]