Methanol As an Unlisted Ingredient in Supposedly Alcohol-Based Hand Rub Can Pose Serious Health Risk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methanol Interim AEGL Document
INTERIM 1: 1/2003 INTERIM 2: 2/2005 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) METHANOL (CAS Reg. No. 67-56-1) For NAS/COT Subcommittee for AEGLs February 2005 METHANOL Interim 2: 2/2005 PREFACE Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic chemicals. AEGLs represent threshold exposure limits for the general public and are applicable to emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and AEGL-1 levels as appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is believed that the recommended exposure levels are applicable to the general population including infants and children, and other individuals who may be sensitive or susceptible. The three AEGLs have been defined as follows: AEGL-1 is the airborne concentration (expressed as ppm or mg/m;) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL-2 is the airborne concentration (expressed as ppm or mg/m;) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects, or an impaired ability to escape. -
Methanol: Toxicological Overview
Methanol Toxicological Overview Key Points Kinetics and metabolism readily absorbed by all routes and distributed in the body water undergoes extensive metabolism, but small quantities are excreted unchanged by the lungs and in the urine Health effects of acute exposure methanol is toxic following ingestion, inhalation or dermal exposure exposure may initially result in CNS depression, followed by an asymptomatic latent period metabolic acidosis and ocular toxicity, which may result in blindness, are subsequent manifestations of toxicity coma and death may occur following substantial exposures long-term effects may include blindness and, following more substantial exposures, permanent damage to the CNS Health effects of chronic exposure long-term inhalation exposure to methanol has resulted in headaches and eye irritation in workers methanol is considered not to be a mutagen or carcinogen in humans methanol is considered not to be a reproductive toxicant in humans PHE publications gateway number: 2014790 Published: August 2015 Compendium of Chemical Hazards: Methanol Summary of Health Effects Methanol may be acutely toxic following inhalation, oral or dermal exposure. Acute methanol toxicity often follows a characteristic series of features; initially central nervous system (CNS) depression and gastrointestinal tract (GI) irritation may be observed. This is typically followed by a latent period of varying duration from 12–24 hours and occasionally up to 48 hours. Subsequently, a severe metabolic acidosis develops with nausea, vomiting and headache. Ocular toxicity ranges from photophobia and misty or blurred vision to markedly reduced visual acuity and complete blindness following high levels of exposure. Ingestion of as little as 4–10 mL of methanol in adults may cause permanent damage. -
METHANOL 6 (CAS Reg
1 INTERIM 1: 1/2003 2 INTERIM 2: 2/2005 3 INTERIM ACUTE EXPOSURE GUIDELINE LEVELS 4 (AEGLs) 5 METHANOL 6 (CAS Reg. No. 67-56-1) 7 For 8 NAS/COT Subcommittee for AEGLs 9 February 2005 METHANOL Interim 2: 2/2005 10 PREFACE 11 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the 12 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances 13 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and 14 other scientific data and develop AEGLs for high priority, acutely toxic chemicals. 15 AEGLs represent threshold exposure limits for the general public and are applicable to emergency 16 exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and AEGL-1 levels as 17 appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 18 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is believed that the 19 recommended exposure levels are applicable to the general population including infants and children, and 20 other individuals who may be sensitive or susceptible. The three AEGLs have been defined as follows: 21 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it 22 is predicted that the general population, including susceptible individuals, could experience notable 23 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling 24 and are transient and reversible upon cessation of exposure. -
Alcohols I 1400
ALCOHOLS I 1400 Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1400, Issue 2 EVALUATION: PARTIAL Issue 1: 15 February 1984 Issue 2: 15 August 1994 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS AND SYNONYMS: (1) ethanol: ethyl alcohol. (2) isopropyl alcohol: 2-propanol. (3) tert-butyl alcohol: 2-methyl-2-propanol. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (coconut shell charcoal, 100 mg/50 mg) ANALYTE: compounds above FLOW RATE: 0.01 to 0.2 L/min (£0.05 L/min for ethyl alcohol) DESORPTION: 1 mL 1% 2-butanol in CS 2 (1) (2) (3) INJECTION VOL-MIN: 0.1 L 0.3 L 1.0 L VOLUME: 5 µL -MAX: 1 L 3 L 10 L TEMPERATURE-INJECTION: 200 °C SHIPMENT: cooled -DETECTOR: 250-300 °C -COLUMN: 65-70 °C SAMPLE STABILITY: unknown, store in freezer CARRIER GAS: N2 or He, 30 mL/min BLANKS: 2 to 10 field blanks per set COLUMN: glass, 2 m x 4-mm ID, 0.2% Carbowax 1500 on 60/80 Carbopack C or equivalent ACCURACY CALIBRATION: solutions of analyte in eluent (internal standard optional) RANGE STUDIED: see EVALUATION OF METHOD RANGE AND BIAS: not significant [1] PRECISION: see EVALUATION OF METHOD OVERALL PRECISION (S ˆ ): see EVALUATION OF METHOD rT ESTIMATED LOD: 0.01 mg per sample [2] ACCURACY: ± 14% APPLICABILITY: The working ranges are 16 to 1000 ppm ethanol (30 to 1900 mg/m 3) for a 1-L air sample; 4 to 400 ppm isopropyl alcohol (10 to 1000 mg/m 3) for a 3-L air sample; and 1 to 100 ppm t-butyl alcohol (3 to 300 mg/m 3) for a 10-L air sample. -
Evaluation of the Fate and Transport of Methanol in the Environment
EVALUATION OF THE FATE AND TRANSPORT OF METHANOL IN THE ENVIRONMENT Prepared For: American Methanol Institute 800 Connecticut Avenue, NW, Suite 620 Washington, DC 20006 Prepared By: Malcolm Pirnie, Inc. 180 Grand Avenue, Suite 1000 Oakland, California 94612 JANUARY 1999 3522-002 TABLE OF CONTENTS Page EXECUTIVE SUMMARY .............................................................................................ES-1 1.0 BACKGROUND .................................................................................................... 1 1.1 Purpose and Scope of Report........................................................................ 1 1.2 Introduction and History of Use ................................................................... 1 1.3 Methanol Production..................................................................................... 3 1.4 Chemical and Physical Properties................................................................. 4 1.5 Release Scenarios ......................................................................................... 5 1.6 Fate in the Environment ............................................................................... 7 2.0 PARTITIONING OF METHANOL IN THE ENVIRONMENT........................... 9 2.1 Methanol Partitioning Between Environmental Compartments .................. 9 2.2 Air/Water Partitioning.................................................................................. 9 2.3 Soil/Water Partitioning................................................................................ -
A Case of Intentional Methanol Ingestion Sarah Gilligan MD, MS, Devin Horton MD Department of Internal Medicine, University of Utah, Salt Lake City
A Case of Intentional Methanol Ingestion Sarah Gilligan MD, MS, Devin Horton MD Department of Internal Medicine, University of Utah, Salt Lake City To understand the complications and management of • Any methanol ingestion of more than 1 mg/kg may be • Ophtholmalogic manifestations can include methanol toxicity. lethal. mydriasis, retinal edema leading to retinal sheen, afferent pupillary defect, and, most commonly, toxic • Methanol itself is relatively non-toxic, causing only CNS optic neuropathy. depression; the more severe manifestations of methanol History of Present Illness toxicity are related to the breakdown product formic acid • Studies have shown the optimal treatment of toxic or formate. optic neuropathy is high dose solumedrol followed • 41 year old female with depression, seizure disorder, by a prednisone taper. alcohol abuse, and history of multiple suicide attempts • Metabolism of methanol: alcohol dehydrogenase oxidizes presented to the emergency department reporting that methanol to form formaldehyde which is then oxidized to • It is important to assess the mental health of she had ingested anti-freeze and alcohol and inhaled formic acid. Formic acid is oxidized to non-toxic carbon patients treated for methanol ingestion to gasoline in an attempt to commit suicide. dioxide and water by folate dependent reactions. determine intent and risk of additional self-harm. Physical Exam • Initial manifestations of methanol overdose can be mild • Successful treatment of methanol ingestion requires • Normal vital signs confusion and the appearance of intoxication. early recognition and aggressive multifactorial • Mild suprapubic tenderness medical management aimed at decreasing the levels • Laboratory testing classically shows significant metabolic • Slurred speech and inappropriate affect but alert and of methanol and its metabolites and preventing acidosis with extremely high anion gap and high osmolar answer questions long-term end organ damage. -
Process Design and Simulation of Propylene and Methanol Production Through Direct and Indirect Biomass Gasification by Bernardo
Process Design and Simulation of Propylene and Methanol Production through Direct and Indirect Biomass Gasification by Bernardo Rangel Lousada A dissertation submitted to the graduate faculty of Auburn University in partial fulfillment of the requirements for the degree of Master in Chemical Engineering Auburn, Alabama August 6, 2016 Keywords: Process Design, Gasification, Biomass, Propylene, Methanol, Aspen Plus, Simulation, Economic, Synthesis Copyright 2016 by Bernardo Lousada Approved by Mario R. Eden, Chair and McMillan Professor of Chemical Engineering Allan E. David, John W. Brown Assistant Professor Professor of Chemical Engineering Selen Cremaschi, B. Redd Associate Professor Professor of Chemical Engineering Abstract As a result of increasing environmental concerns and the depletion of petroleum resources, the search for renewable alternatives is an important global topic. Methanol produced from biomass could be an important intermediate for liquid transportation fuels and value-added chemicals. In this work, the production of methanol and propylene is investigated via process simulation in Aspen Plus. Two gasification routes, namely, direct gasification and indirect gasification, are used for syngas production. The tar produced in the process is converted via catalytic steam reforming. After cleanup and treatment, the syngas is converted to methanol which will be further converted to high value olefins such as ethylene, propylene and butene via the methanol to propylene (MTP) processes. For a given feedstock type and supply/availability, we compare the economics of different conversion routes. A discounted cash flow with 10% of internet rate of return along 20 years of operation is done to calculate the minimum selling price of propylene required which is used as the main indicator of which route is more economic attractive. -
Methanol Toxicity Outbreak: When Fear of COVID-19 Goes Viral
PostScript LETTER in several other centres throughout the Patient and public involvement Patients and/or Emerg Med J: first published as 10.1136/emermed-2020-209886 on 15 May 2020. Downloaded from country during this period. the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer Unlike prior outbreaks, the current Methanol toxicity outbreak: to the Methods section for further details. outbreak of methanol poisoning appears Patient consent for publication Not required. when fear of COVID-19 to be due to the belief that consumption of disinfectants and sanitizers, specif- Provenance and peer review Not commissioned; goes viral internally peer reviewed. ically, alcohol, would be beneficial in preventing the COVID-19 infection. This This article is made freely available for use in Dear editor accordance with BMJ’s website terms and conditions is supported by several cases of methanol for the duration of the covid-19 pandemic or until Methanol ingestion can be a highly poisoning in children resulting from a otherwise determined by BMJ. You may use, download lethal poisoning; methanol is metabolised desperate attempt by parents to prevent and print the article for any lawful, non- commercial to formaldehyde and formic acid, which or cure the infection. When facing a purpose (including text and data mining) provided that all copyright notices and trade marks are retained. are extremely toxic to the central nervous serious health threat, refractory to the system and the gastrointestinal tract available remedies, such irrational deci- © Author(s) (or their employer(s)) 2020. No commercial re- use. -
Methanol:Acetone Fixation and PGL-1 Staining Protocol
MeOH/Acetone fixation and staining of C. elegans for anti-PGL-1 whole-mount staining adapted by Erik Andersen from Mello Lab protocol by Daryl Conte, February, 2006 Things you will need: Micro Slides, precleaned, frosted, 25 x 75 mm (VWR cat no. 48312-002) Micro cover glasses, 25 mm square (VWR cat no. 48366-067) Micro cover glasses, 18 mm square (VWR cat no. 48366-045) PAP pen Polylysine (Sigma) Coplin jars Block/wedge of dry ice in Styrofoam box with lid – dry ice must be flat as slides will be placed on top 100% Methanol (-20°C in Coplin jar) 100% Acetone (-20°C in Coplin jar) Humid chamber – a plastic lidded box with moistened paper towels or whatmann paper in the bottom and a support to hold slides above paper Gravid adult worms or Larvae grown at 23ºC for at least two generations Mounting medium with antifade DAPI or other counterstain Glass Depression slide Water in which to wash larvae 20 μL pipet and mouth-pipette tubing Coating slides with polylysine – do this the day before. Many slides can be coated and stored for future use. 1. Prepare 0.01% polylysine solution. 2. Pipette polylysine solution (about 10 μL) onto surface of slide. 3. Dry slides thoroughly at 65°C. I dry them overnight. 4. It seems best to label your slides with a diamond pen, because later alcohol-fixation steps dissolve most inks. Fixing larvae to slides 1. Transfer >100 larvae of the same stage to 100 μL of water in a glass depression slide. It is very important to pick animals of the same stage, as larger worms, detritus or embryos will not allow for good crushing and subsequent fixation. -
Safety Data Sheet
SAFETY DATA SHEET Flammable Liquefied Gas Mixture: Ethanol / Isobutanol / Isopropanol (Isopropyl Alcohol) / Methanol / N-Butane / N-Butanol (N-Butyl Alcohol) / N-Propanol / Sec-Butyl Alcohol (2-Butanol) / Tert Butanol Section 1. Identification GHS product identifier : Flammable Liquefied Gas Mixture: Ethanol / Isobutanol / Isopropanol (Isopropyl Alcohol) / Methanol / N-Butane / N-Butanol (N-Butyl Alcohol) / N-Propanol / Sec-Butyl Alcohol (2-Butanol) / Tert Butanol Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 011439 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 Emergency telephone : 1-866-734-3438 number (with hours of operation) Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. May cause frostbite. May form explosive mixtures in Air. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. -
Hand Sanitizers and Updates on Methanol Testing
Hand Sanitizers and Updates on Methanol Testing Francis Godwin Director, Office of Manufacturing Quality, Office of Compliance Center for Drug Evaluation and Research, FDA USP Global Seminar Series: Ensuring Quality Hand Sanitizer Production During Covid-19 for Manufacturers February 23, 2021 • DISCLAIMER: The views and opinions expressed in this presentation are those of the authors and do not necessarily represent official policy or positions of the Food & Drug Administration www.fda.gov 2 Outline ● What OMQ Does ● General Background on Hand Sanitizer ● Recent Safety Concerns and FDA Actions ● Substitution ● Methanol Testing Requirements for Drug Product Manufacturers www.fda.gov 3 Office of Manufacturing Quality What We Do 4 CDER/OC Mission To shield patients from poor- quality, unsafe, and ineffective drugs through proactive compliance strategies and risk-based enforcement action. www.fda.gov 5 What OMQ Does • We evaluate compliance with Current Good Manufacturing Practice (CGMP) for drugs based on inspection reports and evidence gathered by FDA investigators. • We develop and implement compliance policy and take regulatory actions to protect the public from adulterated drugs in the U.S. market. Source: FDA www.fda.gov 6 Drug Adulteration Provisions U.S. Federal Food, Drug, & Cosmetic Act • 501(a)(2)(A): Insanitary conditions • 501(a)(2)(B): Failure to conform with CGMP • 501(b): Strength, quality, or purity differing from official compendium • 501(c): Misrepresentation of strength, etc., where drug is unrecognized in compendium • 501(d): Mixture with or substitution of another substance • 501(j): Deemed adulterated if owner/operator delays, denies, refuses, or limits inspection www.fda.gov 7 CGMP Legal Authority Section 501(a)(2)(B) requires conformity with CGMP A drug is adulterated if the methods, facilities, or controls used in its manufacture, processing, packing, or holding do not conform to CGMP to assure that such drug meets purported characteristics for safety, identity, strength, quality, and purity. -
In Vitro Nitric Oxide Scavenging Activity of Methanol Extracts of Three Bangladeshi Medicinal Plants
ISSN: 2277- 7695 CODEN Code: PIHNBQ ZDB-Number: 2663038-2 IC Journal No: 7725 Vol. 1 No. 12 2013 Online Available at www.thepharmajournal.com THE PHARMA INNOVATION - JOURNAL In Vitro Nitric Oxide Scavenging Activity Of Methanol Extracts Of Three Bangladeshi Medicinal Plants Rozina Parul1*, Sukalayan Kumar Kundu 2 and Pijush Saha2 1. Department of Pharmacy, Gono Bishwabidyalay, Savar, Dhaka – 1344, Bangladesh. E-mail: [email protected] 2. Department of Pharmacy, Jahangirnagar University, Savar, Dhaka – 1342, Bangladesh. The methanol extracts of three medicinal plants named Phyllunthus freternus, Triumfetta rhomboidae and Casuarina littorea were examined for their possible regulatory effect on nitric oxide (NO) levels using sodium nitroprusside as a NO donor in vitro. Most of the extracts tested demonstrated direct scavenging of NO and exihibited significant activity and the potency of scavenging activity was in the following order: Phyllunthus freternus > Leaves of Triumfetta rhomboidae > Casuarina littorea > barks of Triumfetta rhomboidae > roots of Triumfetta rhomboidae. All the evaluated extracts exhibited a dose dependent NO scavenging activity. The methanolic extracts of Phyllunthus freternus showed the greatest NO scavenging effect of 60.80% at 200 µg/ml with IC50 values 48.27 µg/ml as compared to the positive control ascorbic acid where 96.27% scavenging was observed at similar concentration with IC50 value of 5.47 µg/ml. The maximum NO scavenging of Leaves of Triumfetta rhomboidae, barks of Triumfetta rhomboidae, roots of Triumfetta rhomboidae and Casuarina littorea were 53.94%, 50.43%, 33.23% and 54.02% with IC50 values 97.81 µg/ml, 196.89 µg/ml, > 200 µg/ml and 168.17 µg/ml respectively.