And Isopropyl Alcohol for Methanol, Including During the Public Health Emergency (COVID-19)

Total Page:16

File Type:pdf, Size:1020Kb

And Isopropyl Alcohol for Methanol, Including During the Public Health Emergency (COVID-19) Contains Nonbinding Recommendations Policy for Testing of Alcohol (Ethanol) and Isopropyl Alcohol for Methanol, Including During the Public Health Emergency (COVID-19) Guidance for Industry January 2021 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Center for Veterinary Medicine (CVM) Current Good Manufacturing Practice (CGMP) Contains Nonbinding Recommendations Preface Public Comment This guidance is being issued to address the Coronavirus Disease 2019 (COVID-19) public health emergency. This guidance is being implemented without prior public comment because the Food and Drug Administration (FDA or the Agency) has determined that prior public participation for this guidance is not feasible or appropriate (see section 701(h)(1)(C) of the Federal Food, Drug, and Cosmetic Act (FD&C Act) and 21 CFR 10.115(g)(2)). This guidance document is being implemented immediately, but it remains subject to comment in accordance with the Agency’s good guidance practices. Comments may be submitted at any time for Agency consideration. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. Submit electronic comments to https://www.regulations.gov. All comments should be identified with the docket number FDA-2020-D-2016 and complete title of the guidance in the request. Additional Copies Additional copies are available from the FDA webpage titled “COVID-19-Related Guidance Documents for Industry, FDA Staff, and Other Stakeholders,” available at https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/covid-19-related- guidance-documents-industry-fda-staff-and-other-stakeholders, and the FDA Webpage titled “Hand Sanitizers | COVID-19” available at: https://www.fda.gov/drugs/coronavirus-covid- 19-drugs/hand-sanitizers-covid-19, and the FDA webpage titled “Search for FDA Guidance Documents,” available at https://www.fda.gov/regulatory-information/search-fda-guidance- documents. You may also send an e-mail request to [email protected] to receive an additional copy of the guidance. Please include the document number FDA-2020-D-2016 and complete title of the guidance in the request. Questions For questions regarding ethanol or isopropyl alcohol for use in hand sanitizer products, contact FDA at [email protected]. For other questions regarding this document contact the applicable Center at: CDER (Email: [email protected]), CBER (Email: [email protected]), or CVM (Email: [email protected]). Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION .......................................................................................................... 1 II. BACKGROUND ............................................................................................................. 3 III. POLICY ON TESTING FOR METHANOL …………………………………………...6 Contains Nonbinding Recommendations Policy for Testing of Alcohol (Ethanol) and Isopropyl Alcohol for Methanol, Including During the Public Health Emergency (COVID-19) Guidance for Industry1 This guidance represents the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA office responsible for this guidance as listed on the title page. I. INTRODUCTION The Food and Drug Administration (FDA or Agency) plays a critical role in protecting the United States from emerging infectious diseases, such as the Coronavirus Disease 2019 (COVID-19) pandemic. FDA is committed to providing timely guidance to support continuity and response efforts to this pandemic. This guidance is intended to alert pharmaceutical manufacturers2 and pharmacists in State- licensed pharmacies or Federal facilities who engage in drug compounding3 to the potential public health hazard of alcohol (ethyl alcohol or ethanol) or isopropyl alcohol contaminated with or substituted with methanol. FDA is aware of reports of fatal methanol poisoning of consumers who ingested alcohol-based hand sanitizers that were manufactured with methanol or methanol-contaminated ethanol.4 FDA has also received numerous reports of dermal toxicity associated with such products. 1 This guidance was developed by the Center for Drug Evaluation and Research (CDER), Food and Drug Administration, in cooperation with the Center for Biologics Evaluation and Research and the Center for Veterinary Medicine. 2 For the purposes of this guidance, references to “manufacturers” include registered outsourcing facilities because outsourcing facilities are subject to current good manufacturing practice (CGMP) requirements. See section 503B(a) of the Federal, Food, Drug, and Cosmetic Act (FD&C Act); see also draft guidance for industry Current Good Manufacturing Practice—Guidance for Human Drug Compounding Outsourcing Facilities Under Section 503B of the FD&C Act. When finalized, this guidance will represent the FDA’s current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at https://www.fda.gov/regulatory- information/search-fda-guidance-documents. References to “manufacturers” also include repackers, relabellers, and suppliers of alcohol. 3 See section 503A of the FD&C Act. 4 Yip L, Bixler D, Brooks DE, et al. Serious Adverse Health Events, Including Death, Associated with Ingesting Alcohol-Based Hand Sanitizers Containing Methanol — Arizona and New Mexico, May–June 2020. MMWR Morb Mortal Wkly Rep 2020;69:1070–1073. DOI: http://dx.doi.org/10.15585/mmwr.mm6932e1external icon. 1 Contains Nonbinding Recommendations FDA also is concerned that other drug products containing ethanol or isopropyl alcohol (pharmaceutical alcohol5), which are widely used active ingredients in a variety of drug products, could be similarly vulnerable to methanol contamination. For example, certain inhalation products, mouthwashes, cough and cold products, and many topical drug products include pharmaceutical alcohol. As the COVID-19 pandemic has increased the demand for hand sanitizer products, the demand for pharmaceutical alcohol as the active ingredient of those products has also increased. In the past, increased stress on supply chains has made ingredients more vulnerable to economically motivated adulteration. For these reasons, the policy outlined in this guidance applies to pharmaceutical alcohol used as an active or inactive ingredient in a drug regardless of whether the drug product is a hand sanitizer. This policy will help pharmaceutical manufacturers and pharmacists who engage in drug compounding avoid using pharmaceutical alcohol contaminated with or substituted with methanol in drug products.6 The Agency is issuing this guidance to communicate its policy for the duration of the public health emergency declared by the Secretary of Health and Human Services (HHS) on January 4 31, 2020, including any renewals made by the HHS Secretary in accordance with section 319(a)(2) of the Public Health Service Act (PHS Act) (42 U.S.C. 247d(a)(2)). At such time when the public health emergency is over, as declared by the Secretary, FDA intends to reassess this guidance. FDA is continually assessing the needs and circumstances related to this policy, and as relevant needs and circumstances evolve, FDA intends to update or modify this policy as appropriate. Therefore, within 60 days following the termination of the public health emergency, FDA intends to revise and replace this guidance with any appropriate changes based on comments received on this guidance and the Agency’s experience with implementation. Given this public health emergency, and as discussed in the Notice in the Federal Register of March 25, 2020 (85 FR 16949), titled “Process for Making Available Guidance Documents Related to Coronavirus Disease 2019,” available at https://www.govinfo.gov/content/pkg/FR- 2020-03-25/pdf/2020-06222.pdf, this guidance is being implemented without prior public comment because the FDA has determined that prior public participation for this guidance is not feasible or appropriate (see section 701(h)(1)(C)(i) of the FD&C Act (21 U.S.C. 371(h)(1)(C)(i)) and 21 CFR 10.115(g)(2)). This guidance document is being implemented immediately, but it remains subject to comment in accordance with the Agency’s good guidance practices. The contents of this document do not have the force and effect of law and are not meant to bind the public in any way, unless specifically incorporated into a contract. This document is intended only to provide clarity to the public regarding existing requirements under the law. FDA guidance documents, including this guidance, should be viewed only as recommendations, unless 5 For the purposes of this guidance, we use the term pharmaceutical alcohol to mean either ethanol (ethyl alcohol) or isopropyl alcohol (2-propanol). Both are used as an active ingredient in alcohol-based hand sanitizers and may be used in other drug products as an active or inactive ingredient. 6 In this guidance, “drug” and “drug product” include both human and animal drugs and biological products. 2 Contains Nonbinding Recommendations specific regulatory or statutory requirements are cited. The use of the word should in FDA guidances
Recommended publications
  • Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Safer Cocktail for an Ethanol/Water/Ammonia Solvent
    L A S C P LSC in Practice C P O C L Safer Cocktail for an Ethanol/Water/ K T I A I C Ammonia Solvent Mixture L S A Problem T A laboratory had been under pressure to move towards Using this mixture, the sample uptake capacity of I the newer generation of safer liquid scintillation ULTIMA-Flo AP, ULTIMA-Flo M and ULTIMA Gold O cocktails. Unfortunately, the sample composition of LLT (PerkinElmer 6013599, 6013579 and 6013377, one of their targets kept giving the researchers problems. respectively) at 20 °C was determined and N Before the lead researcher contacted PerkinElmer, the results were: they had tried PerkinElmer’s Opti-Fluor®, ULTIMA ULTIMA-Flo AP 4.00 mL in 10 mL cocktail N Gold LLT, and ULTIMA Gold XR. All of the safer O ™ ULTIMA-Flo M 4.25 mL in 10 mL cocktail cocktails could incorporate each of the constituents T as indicated by their sample capacity graphs. ULTIMA Gold LLT 4.25 mL in 10 mL cocktail E The problematic sample was an extraction solvent From these results, we observed that it was possible consisting of 900 mL ethanol, 50 mL ammonium to get 4.0 mL of the sample into all of these cocktails. hydroxide, 500 mL water and an enzyme containing In addition, we determined that it was not possible to 14C. The mixture had a pH in the range of 10 to 11. get 4 mL sample into 7 mL of any of these cocktails. To complete this work, we also checked for lumines- Discussion cence using 4 mL of sample in 10 mL of each cocktail.
    [Show full text]
  • An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
    Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3].
    [Show full text]
  • The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability
    pharmaceutics Review The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability Jannes van der Merwe, Jan Steenekamp, Dewald Steyn and Josias Hamman * Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; [email protected] (J.v.d.M.); [email protected] (J.S.); [email protected] (D.S.) * Correspondence: [email protected]; Tel.: +27-18-299-4035 Received: 28 February 2020; Accepted: 21 April 2020; Published: 25 April 2020 Abstract: Many active pharmaceutical ingredients (APIs) exhibit poor solubility and low dissolution rates in aqueous environments such as the luminal fluids of the gastrointestinal tract. The oral bioavailability of these compounds is usually very low as a result of their poor solubility properties. In order to improve the bioavailability of these poorly soluble drugs, formulation strategies have been applied as a means to improve their aqueous solubility and dissolution rates. With respect to formulation approaches, excipients can be incorporated in the formulation to assist in the dissolution process of the drug, or specialized dosage forms can be formulated that improve dissolution rate through various mechanisms. This paper provides an overview of selected excipients (e.g., alkalinizing agents, surfactants and sugars) that can be used in formulations to increase the dissolution rate as well as specialized dosage forms such as self-emulsifying delivery systems and formulation techniques such as inclusion complexes and solid dispersions. These formulation approaches are discussed with available examples with specific reference to positive outcomes in terms of drug solubility and bioavailability enhancement.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Liquichek Ethanol/Ammonia Control SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control
    Bio-Rad Laboratories SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control SERUM CHEMISTRY CONTROLS Liquichek Ethanol/Ammonia Control A liquid control used to monitor the precision of Ethanol and Ammonia test procedures in the clinical laboratory. • Liquid • Normal, elevated and toxic concentrations of Ammonia • 2 year shelf life at 2–8°C • 20 day open-vial stability at 2–8°C Analytes Ammonia Ethanol Refer to the package insert of currently available lots for specific analyte and stability claims Ordering Information Cat # Description 544 Level 1 ..................................................................................... 6 x 3 mL 545 Level 2 ..................................................................................... 6 x 3 mL 546 Level 3 ..................................................................................... 6 x 3 mL 545X Trilevel MiniPak (1 of each level) .................................................................. 3 x 3 mL EQAS Independent QC Unity An independent, external assessment of laboratory Ongoing, proactive, unbiased daily QC that QC Data Management tools that help you create performance in comparison to your peers. helps identify errors as they occur or begin to trend. a strategy to reduce risk and streamline QC workflow. QCNet.com/eqas QCNet.com/independentqc QCNet.com/datamanagement Bio-Rad For further information, please contact the Bio-Rad office nearest you Laboratories, Inc. or visit our website at www.bio-rad.com/qualitycontrol Clinical Website www.bio-rad.com/diagnostics Australia
    [Show full text]
  • SAFETY DATA SHEET Isopropyl Alcohol
    SAFETY DATA SHEET Isopropyl Alcohol Section 1. Identification GHS product identifier : Isopropyl Alcohol Chemical name : Isopropyl alcohol Other means of : isopropanol; 2-Propanol identification Product type : Liquid. Product use : Synthetic/Analytical chemistry. Synonym : isopropanol; 2-Propanol SDS # : 001105 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE LIQUIDS - Category 2 substance or mixture EYE IRRITATION - Category 2A SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Narcotic effects) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May form explosive mixtures with air. Highly flammable liquid and vapor. Causes serious eye irritation. May cause drowsiness or dizziness. Precautionary statements General : Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Prevention : Wear protective gloves. Wear eye or face protection. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use explosion- proof electrical, ventilating, lighting and all material-handling equipment. Use only non- sparking tools. Take precautionary measures against static discharge. Keep container tightly closed. Use only outdoors or in a well-ventilated area. Avoid breathing vapor. Wash hands thoroughly after handling. Response : IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER or physician if you feel unwell.
    [Show full text]
  • Influence of Mannitol Concentration on the Physicochemical, Mechanical and Pharmaceutical Properties of Lyophilised Mannitol
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wolverhampton Intellectual Repository and E-theses Accepted Manuscript Title: Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol Author: Waseem Kaialy Usman Khan Shadan Mawlud PII: S0378-5173(16)30441-0 DOI: http://dx.doi.org/doi:10.1016/j.ijpharm.2016.05.052 Reference: IJP 15791 To appear in: International Journal of Pharmaceutics Received date: 30-3-2016 Revised date: 23-5-2016 Accepted date: 26-5-2016 Please cite this article as: Kaialy, Waseem, Khan, Usman, Mawlud, Shadan, Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol.International Journal of Pharmaceutics http://dx.doi.org/10.1016/j.ijpharm.2016.05.052 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol Waseem Kaialy*, Usman Khan, Shadan Mawlud School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK *Corresponding author Waseem Kaialy, Tel: +441902321139, E-mail: [email protected] 1 Graphical Abstract 2 Abstract Mannitol is a pharmaceutical excipient that is receiving increased popularity in solid dosage forms.
    [Show full text]
  • Oral Films: a Comprehensive Review
    Mahboob et al., International Current Pharmaceutical Journal, November 2016, 5(12): 111-117 International Current http://www.icpjonline.com/documents/Vol5Issue12/03.pdf Pharmaceutical Journal REVIEW ARTICLE OPEN ACCESS Oral Films: A Comprehensive Review *Muhammad Bilal Hassan Mahboob1,2, Tehseen Riaz1,2, Muhammad Jamshaid1, Irfan Bashir1,2 and Saqiba Zulfiqar1,2,3 1Faculty of Pharmacy, University of Central Punjab Lahore, Pakistan 2Foundation for Young Researchers, Pakistan 3Shoukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan ABSTRACT In the late 1970s, rapid disintegrating drug delivery system was developed as an alternative to capsules, tablets and syrups for geriatric and pediatric patients having problems in swallowing. To overcome the need, number of orally disintegrating tablets which disinte- grate within one minute in mouth without chewing or drinking water were commercialized. Then later, oral drug delivery technology had been improved from conventional dosage form to modified release dosage form and developed recently rapid disintegrating films rather than oral disintegrating tablets. Oral disintegrating film or strips containing water dissolving polymer retain the dosage form to be quickly hydrated by saliva, adhere to mucosa, and disintegrate within a few seconds, dissolve and releases medication for oro- mucosal absorption when placed in mouth. Oral film technology is the alternative route with first pass metabolism. This review give a comprehensive detail of materials used in ODF, manufacturing process, evaluation tests and marketed products. Key Words: Oral disintegrating film, oral strip, pediatric and geriatric patients. INTRODUCTIONINTRODUCTION An oral film or strips are manufactured as a large Oral administration is the most preferred route due to re- sheet and then cut into individual dosage unit for packag- lieve of ingestion, pain reduction, to accommodate various ing (Desai et al., 2012).
    [Show full text]
  • N-BUTYL ALCOHOL
    Right to Know Hazardous Substance Fact Sheet Common Name: n-BUTYL ALCOHOL Synonyms: Propyl Carbinol; n-Butanol CAS Number: 71-36-3 Chemical Name: 1-Butanol RTK Substance Number: 1330 Date: November 1998 Revision: January 2008 DOT Number: UN 1120 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE n-Butyl Alcohol is a colorless liquid with a strong, sweet Hazard Summary alcohol odor. It is used as a solvent for fats, waxes, shellacs, Hazard Rating NJDOH NFPA resins, gums, and varnish, in making hydraulic fluids, and in HEALTH - 2 medications for animals. FLAMMABILITY - 3 REACTIVITY - 0 f ODOR THRESHOLD = 1 to 15 ppm FLAMMABLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f n-Butyl Alcohol is on the Right to Know Hazardous f n-Butyl Alcohol can affect you when inhaled and by Substance List because it is cited by OSHA, ACGIH, DOT, passing through the skin. NIOSH, DEP, IRIS, NFPA and EPA. f Contact can irritate and burn the skin. f This chemical is on the Special Health Hazard Substance f n-Butyl Alcohol can irritate and burn the eyes with possible List. eye damage. f Inhaling n-Butyl Alcohol can irritate the nose, throat and lungs. f Exposure to n-Butyl Alcohol can cause headache, dizziness, nausea and vomiting. SEE GLOSSARY ON PAGE 5. f n-Butyl Alcohol can damage the liver, kidneys, hearing, and sense of balance.
    [Show full text]
  • Williamson Ether Synthesis the Williamson Ether Synthesis Is an Organic Reaction, Forming an Ether from an Alkyl Halide and an Alcohol
    The Williamson ether synthesis The Williamson ether synthesis is an organic reaction, forming an ether from an alkyl halide and an alcohol. This reaction was developed by Alexander Williamson in 1850. It involves the reaction of an alkoxide ion with a primary alkyl halide via an SN2 reaction. The Williamson reaction is widely used in both laboratory and industrial synthesis, and remains the simplest and most popular method of preparing ethers. Both symmetrical and asymmetrical ethers are easily prepared. The reaction for this week: an example of a Williamson ether synthesis acetaminophen ethyl iodide phenacetin starting material reagent product Phenacetin may be synthesized as an example of the Williamson ether synthesis The first synthesis of phenacetin was reported in 1878 by Harmon Morse. Procedure 1. Weigh an Extra-Strength Tylenol tablet. Pulverize the tablet with mortar and pestle. Weigh out 0.22 g and place it in a dry 15-ml round-bottom flask along with 0.28 g of finely pulverized K2CO3 (mortar and pestle) and 3.0 mL of butanone. Carefully add 0.28 mL of ethyl iodide with a syringe. 2. Add a stir bar; attach a microscale water-cooled condenser to the flask. Heat the mixture under reflux directly on a hot plate at medium setting for 1 hour. In the meantime, obtain the IR of acetaminophen. 3. Turn off the heat. Allow the mixture to cool down. Add 4 mL of water to the flask and transfer its contents to a 16 x 125 mm test tube with a screw cap. Rinse round-bottom flask 4 times with 1 mL of tert-butyl methyl ether (BME) and add the rinsings to the test tube.
    [Show full text]
  • Alcohols I 1400
    ALCOHOLS I 1400 Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1400, Issue 2 EVALUATION: PARTIAL Issue 1: 15 February 1984 Issue 2: 15 August 1994 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS AND SYNONYMS: (1) ethanol: ethyl alcohol. (2) isopropyl alcohol: 2-propanol. (3) tert-butyl alcohol: 2-methyl-2-propanol. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (coconut shell charcoal, 100 mg/50 mg) ANALYTE: compounds above FLOW RATE: 0.01 to 0.2 L/min (£0.05 L/min for ethyl alcohol) DESORPTION: 1 mL 1% 2-butanol in CS 2 (1) (2) (3) INJECTION VOL-MIN: 0.1 L 0.3 L 1.0 L VOLUME: 5 µL -MAX: 1 L 3 L 10 L TEMPERATURE-INJECTION: 200 °C SHIPMENT: cooled -DETECTOR: 250-300 °C -COLUMN: 65-70 °C SAMPLE STABILITY: unknown, store in freezer CARRIER GAS: N2 or He, 30 mL/min BLANKS: 2 to 10 field blanks per set COLUMN: glass, 2 m x 4-mm ID, 0.2% Carbowax 1500 on 60/80 Carbopack C or equivalent ACCURACY CALIBRATION: solutions of analyte in eluent (internal standard optional) RANGE STUDIED: see EVALUATION OF METHOD RANGE AND BIAS: not significant [1] PRECISION: see EVALUATION OF METHOD OVERALL PRECISION (S ˆ ): see EVALUATION OF METHOD rT ESTIMATED LOD: 0.01 mg per sample [2] ACCURACY: ± 14% APPLICABILITY: The working ranges are 16 to 1000 ppm ethanol (30 to 1900 mg/m 3) for a 1-L air sample; 4 to 400 ppm isopropyl alcohol (10 to 1000 mg/m 3) for a 3-L air sample; and 1 to 100 ppm t-butyl alcohol (3 to 300 mg/m 3) for a 10-L air sample.
    [Show full text]