Draft Winton Wetlands Restoration and Monitoring Strategic Plan V.1.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paterson's Curse (Echium Plantagineum)
PNW 602-E • October 2007 Paterson’s Curse Echium plantagineum in the Pacific Northwest A. Hulting, J. Krenz, and R. Parker Other common names: Salvation cattle industry approximately and southern coast of California Jane, Riverina bluebell, Lady $250 million annually due and in several eastern states. Campbell weed, purple viper’s to pasture land degradation, In addition to pasture lands, bugloss, viper’s bugloss associated management costs, oak savanna habitat in western and contamination of wool by Oregon is particularly vulner- Paterson’s curse is a member seeds (see “Australian resourc- able to invasion, as it is similar of the borage family (Boragina- es,” back page). to the native habitat of Pater- ceae). It is native to Mediterra- Paterson’s curse has been son’s curse and may provide an nean Europe and North Africa found in two locations in excellent environment for this but has spread to southern Oregon. It was first documented species. Africa, South and North Ameri- in Linn County as a roadside This weed has the potential ca, Australia, and New Zealand. infestation in 2003 (Figure 1). to severely degrade agricultural Outside of its native habitat, it is Upon investigation, it was con- and native habitats but can still an aggressive, drought-tolerant cluded that the seeds plant that adapts to many soil were introduced as moisture levels, enabling it to part of a wildflower readily inhabit disturbed areas. seed mix. The weed It is purportedly named after an currently covers a lin- Australian family, the Patersons, ear area of less than who planted it in their garden in 1 acre at that location the 1880s and watched helplessly and is being managed as it took over the landscape. -
Murraguldrie Flora Reserve Working Plan
Murraguldrie Flora Reserve Working Plan MURRAGULDRIE FLORA RESERVE No.179 WORKING PLAN Murraguldrie State Forest Hume Region Xanthorrhoea arborea Grass Tree in open dry forest, Murraguldrie Flora Rese rve 1 Murraguldrie Flora Reserve Working Plan CONTENTS 1.INTRODUCTION 2. KEY VALUES OF THE RESERVE 3. DESCRIPTION OF THE RESERVE 3.1 LOCATION 3.2 EXCLUSIONS 3.3 GEOGRAPHY 3.4 GEOLOGY AND SOILS 3.5 CLIMATE 3.6 VEGETATION 3.7 FAUNA 4. HISTORY 4.1 INDIGENOUS CULTURAL HERITAGE 4.2 NON-INDIGENOUS HERITAGE 4.3 FOREST MANAGEMENT 4.4 FIRE 5. CURRENT USAGE 6. MANAGEMENT 6.1 OBJECTIVES OF MANAGEMENT 6.2 MANAGEMENT ISSUES 6.2.1 AVAILABLE ARCHAEOLOGICAL AND SCIENTIFIC DATA 6.2.2 HUMAN IMPACT 6.2.3 ROAD ACCESS AND ADJACENT LAND MANAGEMENT 6.2.4 WEEDS 6.2.5 FERAL ANIMALS 6.2.6 FIRE 6.2.7 GRAZING 6.2.8 ENDANGERED ECOLOGICAL COMMUNITIES 6.3 FUTURE MANAGEMENT 6.3.1 ACTIVITIES NOT PERMITTED 6.3.2 ACTIVITIES PERMITTED STANDARD CONDITIONS 6.3.3 ACTIVITIES PERMITTED WITH SPECIAL CONDITIONS 7. MONITORING, REPORTING AND REVIEW 8. REFERENCES 9. ACKNOWLEDGEMENTS 10. APPENDICES APPENDIX 1: LOCALITY MAP APPENDIX 2: FLORA RESERVE AND TOPOGRAPHIC MAP APPENDIX 3: FLORA SPECIES LIST APPENDIX 4: FAUNA SPECIES LIST 11. AMENDMENTS 2 Murraguldrie Flora Reserve Working Plan 1. INTRODUCTION This plan has been prepared in accordance with the terms of section 25A (5) of the Forestry Act 1916 with the objective of providing for the future management of that part of the Murraguldrie State Forest No. 403, set aside as Murraguldrie Flora Reserve No. -
Plant Pest Risk Assessment for Paterson's Curse
Oregon Department of Agriculture Plant Pest Risk Assessment for Paterson’s Curse, Echium plantagineum 2004 (Revised 2010) Name: Paterson’s curse, salvation Jane, Echium plantagineum Family: Borage, Boraginaceae Findings of This Review and Assessment: Paterson’s curse has been determined to be a category of an “A” listed noxious weed as defined by the Oregon Department of Agriculture (ODA) Noxious Weed Policy and Classification System. This determination is based on a literature review and analysis using two ODA evaluation forms. Using the Noxious Qualitative Weed Risk Assessment v.3.8, Paterson’s curse scored 69 indicating an “A” and a score of 17 with the Noxious Weed Rating System v.3.2. Paterson’s curse is one of the highest ranked weeds due to its drought tolerance, ease of spread and impacts on agriculture. Introduction: Paterson’s curse is a showy ornamental named for the Paterson family of southern Australia who allegedly introduced the plant in the 1800’s as a garden ornamental. Since then, the plant has spread over millions of acres in New South Wales, Western Australia and Victoria provinces. Annual losses for livestock producers are estimated at $30 million annually (Smyth 1999). To some producers it is considered a blessing. Early season growth contains high levels of protein and the species does provide forage during dry years when other forage is limited. Older growth though is far less palatable and competes for water with more valuable grass forage species. In Oregon, Echium p. was first identified in 2003 by an Oregon farmer, at a site one mile north of Lebanon in Linn County. -
Monocotyledonous Plant Diversity of Wetlands in Kurkheda Taluka, District Gadchiroli, Maharashtra
International Journal of Academic Research and Development International Journal of Academic Research and Development ISSN: 2455-4197; Impact Factor: RJIF 5.22 Received: 01-11-2019; Accepted: 02-12-2019 www.academicjournal.in Volume 5; Issue 1; January 2020; Page No. 01-05 Monocotyledonous plant diversity of wetlands in kurkheda taluka, District Gadchiroli, Maharashtra PA Dani1*, MB Wadekar2, SD Narkhede3 1 Head Department of Botany, SGM College Kurkheda, Gondwana University Gadchiroli, Maharashtra, India 2 Head Department of Botany, NH College, Bramhapuri, Gondwana University Gadchiroli, Maharashtra, India 3 Head Department of Botany, Government Science College, Nagpur, RTM Nagpur University, Nagpur, Maharashtra, India Abstract The wetlands serve as transitional zone in between aquatic and terrestrial ecosystem. Wetlands cover 6% area of total earth surface but they support vast variety of floral and faunal diversity. It also serves as source of economy to native peoples by providing natural resources. Wetland bodies in study site locally known as Boli, Tala or Talav. The aquatic monocotyledons flora of 16 selected perennial lakes in Kurkheda Tehsil were studied for a period of 3 years. Altogether 56 plant spa. belonging to 39 genera and 14 families were recorded from the study site. Further macrophytes are divided into five growth forms. Out of which free floating hydrophytes (FFH) represent 04 species, suspended hydrophytes (SH) represent 02 species, attached submerged hydrophytes (ASH) represent 06 species, attached hydrophytes with floating leaves (AHF) represent 09 species and wetland hydrophytes (WH) which are most dominant growth form represent 35 species. Keywords: wetlands, macrphytes, growth forms monocotyledones, kurkheda 1. Introduction 1. Free floating hydrophytes (FFH): These are plants Wetlands constitute a subject of prime global importance. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Barmah Forest Ramsar Site Strategic Management Plan
Barmah Forest Ramsar Site Strategic Management Plan Department of Sustainability and Environment Parks Victoria developed this Strategic Management Plan in conjunction with the Department of Sustainability and Environment and key stakeholders, and coordinated the public comment process on the draft document. This report was prepared with financial support from the National Wetlands Program, under the Natural Heritage Trust. © The State of Victoria, Department of Sustainability and Environment, 2003 This publication is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior permission of the State of Victoria, Department of Sustainability and Environment. All requests and enquiries should be directed to the Copyright Officer, Library Information Services, Department of Sustainability and Environment, 5/250 Victoria Parade, East Melbourne, Victoria 3002. Disclaimers This publication may be of assistance to you and every effort has been made to ensure that the information in the report is accurate. The Department of Sustainability and Environment does not guarantee that the report is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence, which may arise from you relying on any information in this publication. The views and opinions expressed in this document are those of the authors and do not necessarily reflect the views and opinions of the Commonwealth Government of Australia, the Federal Minister for Environment and Heritage, or the Department of the Environment and Heritage. -
Riparian Vegetation of the River Murray COVER: Healthy Red Gum in the Kex)Ndrook State Forest Near Barham N.S.W
Riparian Vegetation of The River Murray COVER: Healthy red gum in the Kex)ndrook State Forest near Barham N.S.W. Background, black box silhouette. PHOTO: D. Eastburn ISBN 1 R75209 02 6 RIVER MURRAY RIPARIAN VEGET ION STUDY PREPARED FOR: MURRAY-DARLING BASIN COMMISSION BY: MARGULES AND PARTNERS PTY LTD PAND J SMITH ECOLOGICAL CONSULTANTS DEPARTMENT OF CONSERVATION FORESTS AND LANDS VICTORIA January 1990 SUMMARY AND CONCLUSIONS The River Murray Riparian Vegetation Survey was initiated by the Murray Darling Basin Commission t9 assessJhe present status ofthe vegetationalong the Murray, to identify causes ofdegradation, and to develop solutions for its rehabilitation and long term stability. The study area was the floodplain of the Murray River and its anabranches, including the Edward-Wakool system, from below Hume Dam to the upper end of Lake Alexandrina. The components of the study were: · Literature Review A comprehensive bibliography was compiled on the floodplain vegeta tion, its environment and the impact ofman's activities. The literature was reviewed and summarised. · Floristic Survey A field survey was carried out, visiting 112 sites throughout the study area and collecting vegetation data from 335 plots. Data collected were the species present, their relative abundance, the condition of the eucalypts, the amount ofeucalypt regeneration and indices ofgrazing pressure. Brief studies were made of the effects of river regulation and salinisation at specific sites. Thirty-seven plant communities were identified from a numerical analyis ofthe floristic survey data. The differences reflect environmental changes both along the river and across the floodplain. The most important factors were identified as soil salinity levels and flooding frequency. -
Addition to the Cytology of Monocots from District Kangra (Hp)
ADDITION TO THE CYTOLOGY OF MONOCOTS FROM DISTRICT KANGRA (H.P.) OF WESTERN HIMALAYAS, INDIA Harpreet Kaur1, Santosh Kumari2, and Raghbir Chand Gupta2 1Department of Botany, Guru Nanak College for Girls, Sri Muktsar Sahib ( India) 2Department of Botany, Punjabi University, Patiala (India) ABSTRACT At present, the meiotic/varied chromosome numbers are reported for 27 species (33 cytotypes) belonging to 24 genera of 5 families of Monocots from district Kangra of Himachal Pradesh in the Western Himalayas. On the basis of the world-wide data, the chromosome counts for the two taxa as Lolium remotum var. aristatum (n=7) and Cymbopogon clandestinus (n=10) have been cytologically worked out for the first time. Seventeen species as Commelina hasskarlii (n=11, 30), C. kurzii (n=30), Murdannia nudiflora (n=12), Cyperus flavidus (n=32), Acrachne racemosa (n=6), Andropogon tristris (n=20), Brachiaria remota (n=16), Chrysopogon serrulatus (n=20), Digitaria granularis (n=36), Isachne albens (n=5), Microstegium vagans (n=20), Panicum antidotale (n=16), Pennisetum lanatum (n=21), P. purpureum (n=21), Pogonatherum crinitum (n=14), Setaria barbata (n=16) and S. homonyma (n=16) make new chromosome counts in the form of additional cytotypes on the world-wide basis. Also, the presence of B-chromosomes in the hexaploid cytotype (n=21+1B) of Avena fatua var. fatua are shown for the first time. To supplement the Indian data, chromosome counts for the ten species as Canna discolor (n=9), Briza minor (n=5), Bromus catharticus (n=21), Echinochloa crus-pavonis (n=27), Paspalum distichum (2n=50), Pennisetum lanatum (n=18), P. -
Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir. -
Paterson's Curse Weed Warning
weed warning weeds of southern tasmania Don’t let them get away! Do the right thing Weeds are most effectively controlled when they and their numbers Weed waste dumped in bushland or local reserves gives pest plants are small – a little weed control work today will save many dollars and a leg-up into new areas. Do the right thing, and dispose of your weed days of work in years to come. As the number of Paterson’s curse waste responsibly – double-bag any flowering Paterson’s curse you infestations in Tasmania is still limited, now is the time to take action! have removed and burn in an enclosed incinerator. Control that weed! Weeds are easily spread by contaminated machinery and people – check your clothes, shoes, vehicles and other machinery for soil or The best control programs for Paterson’s curse use a number of plant matter that could be carrying weedy plant seeds. integrated methods, including grazing or cultivation of infested areas, herbicide treatment, manual removal and ongoing monitoring. Get informed Small areas of Paterson’s curse can be controlled through manual Paterson’s curse is a significant weed threat for Southern Tasmania. removal – individual plants can be dug out, preferably at the For further information contact your local Council office or call DPIPWE rosette stage, and as long as the tap root is removed, the plant will on 1300 368 550. not resprout. Slashing of the plants can be used as an interim measure to prevent the plants from flowering, however, will require Viper’s bugloss (Echium vulgare) is closely related and very similar further follow-up using other control methods. -
Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium Spp. Invaders in Australia—A Case of Novel Weapons?
Article Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons? Dominik Skoneczny 1, Paul A. Weston 1, Xiaocheng Zhu 1, Geoff M. Gurr 1,2, Ragan M. Callaway 3 and Leslie A. Weston 1,* Received: 7 September 2015 ; Accepted: 26 October 2015 ; Published: 6 November 2015 Academic Editor: Ute Roessner 1 Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga, NSW 2678, Australia; [email protected] (D.S.); [email protected] (P.A.W.); [email protected] (X.Z.); [email protected] (G.M.G.) 2 Institute of Applied Ecology, Fujian Agriculture & Forestry University, Fuzhou 350002, China 3 Division of Biological Science, University of Montana, Missoula, MT 59812, USA; [email protected] * Correspondence: [email protected]; Tel./Fax: +61-2-2633-4689 Abstract: Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. -
Pollen Morphology of Poaceae (Poales) in the Azores, Portugal
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/283696832 Pollen morphology of Poaceae (Poales) in the Azores, Portugal ARTICLE in GRANA · OCTOBER 2015 Impact Factor: 1.06 · DOI: 10.1080/00173134.2015.1096301 READS 33 4 AUTHORS, INCLUDING: Vania Gonçalves-Esteves Maria A. Ventura Federal University of Rio de Janeiro University of the Azores 86 PUBLICATIONS 141 CITATIONS 43 PUBLICATIONS 44 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Maria A. Ventura letting you access and read them immediately. Retrieved on: 10 December 2015 Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 Pollen morphology of Poaceae (Poales) in the Azores, Portugal Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura To cite this article: Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura (2015) Pollen morphology of Poaceae (Poales) in the Azores, Portugal, Grana, 54:4, 282-293, DOI: 10.1080/00173134.2015.1096301 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1096301 Published online: 04 Nov 2015. Submit your article to this journal Article views: 13 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [b-on: Biblioteca do conhecimento