Plant Collection and Herbarium Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Plant Collection and Herbarium Techniques K. Maden / Our Nature (2004) 2:53-57 Plant Collection and Herbarium Techniques K. Maden Tribhuvan University Department of Botany Post Graduate Campus, Biratnagar, Nepal E-mail: [email protected] The collection of plants began in the 16 th clipper, heater. century. Later, J.P.Tourefort (ca 1700, France) v) firstaidbox, topographicmaps, computer, used the term herbarium for plants (Bridson binocular and Forman 1999). Plant collections are essentials for taxonomic researches because Collection procedure they serve as voucher specimens. They also Twig with good flowers need to be help to identify the family, genus and species. collected for the specimen. The portion of the So a herbarium is basically a storehouse of specimen should have to contain clear botanical specimens, which are arranged in the phyllotaxy and the branching system. For small sequence of an accepted classification system, herb, collection of more specimens as could and available for reference or other scientific fix on the herbarium sheet (up to six) is study. desirable. In general, secateurs are used to Once mounted and deposited in the cut the twigs, while for a bit height or down, herbarium, the collections are referred to as pruner is used, and for spiny specimens, such herbarium specimens. Such herbarium as Berberis mucrifolia, leather glove is specimens can be stored for many years and required. For ferns and herbs, digger is applied as such, they serve as: (i) historical collection, to take out underground portion. Some plants (ii) reference collection for checking the stem lies horizontally under the ground; for identity of newly collected plants, (iii) as an example, some Salix and Myricaria species. aid in teaching, and as a source of research In such cases, the underground portion should material. Taxonomic research, therefore, relies be cleaned from the soil particles, etc. If it is upon a collection of preserved plants built up stem, then, specimens have be contained over a long period of time- the herbarium. branching manner. Materials required for plant collection. Aquatic plants are filmy or somewhat i) plant cutter (secateur), pruner, digger, knife, filamentous and are difficult to be arranged leather gloves. on the sheet. A sheet of mounting paper is ii) field note book, pencil, permanent ink pens, placed under a floating or submerged minute magnifying glass, digital camera, flora book plants, and then slowly raising the paper until (colorful), forceps. the specimen is lying on the paper and out of iii) flimsies or newspaper, blotters, corrugated the water. Then paper is lifted making a slope plates, herbarium pressure, straps, tissue carefully, so that it facilitates water runoff. paper, plastic (poly) bags, herbarium bags. These plants need to be shaken well before iv) drying table, mountain survival blanket, putting in flimsies. Some plants can be put in 53 K. Maden / Our Nature (2004) 2:53-57 plastic bags. The plants that easily damage or be taken even if the flower is too small. The can be lost among larger plants from the same range, latitude and longitude as well ecology collection site can be placed in small bags of plant need to be noted down by GPS (Global within the larger bag. Diseased plants, Positioning System) and eyesight vision. depauperate specimens, infected twigs, etc. Likewise specimen’s microhabitat; means should be avoided. associated species should be mentioned, at At the time of collection, it is usually not least five species. Finally the distribution status possible to identify many specimens in the field. of plant also needs to be mentioned, either the Therefore, botanists identify the specimens that collected species is rare, frequent, common, have been pressed and dried. The specimens locally common or occasional. Duplicate are grouped into bundles according to location. specimens of one species that are collected The confirmed specimens should contain their on the same date and same locality should be botanical name, including author. The collection given the same collection number. number can be used as a specimen tag. These number usually begin with 1, 2, 3, etc., and Pressing continue indefinitely. Plant collectors When time and carrying facilities permit, sometimes use a modified system, beginning the most usual method is to press each each new year (2004 -1, 2004 -2, 2005-1, 2005- specimen as it is collected. Another method is 2, 20040512-1, 20040512-2, etc.). Instead of to accumulate the specimens in vasculum (also tags, collection number also can be written in black colored plastic bags can be used for short flimsies by marker. duration, especially in high altitude) and pressed later. Specimens should be of good quality with Field Note good field note. Collection numbers have also After specimen collection, a field record is to be written in the flimsies (newspaper or noted in small pocket sized notebook. Date of blank newspaper). The specimens are kept collection, location (name of place or distance gently within newspaper. Parts of flower are from definite point)), collection number, if much carefully spread without overlapping in possible, name of the specimen, and original shape. If the specimens are long, then description of the floral parts that may change it needs to be folded in V and N or Z shape. after drying are noted down. The good quality Unnecessary overlapping leaves and other specimens also become worst if it does not parts must be avoided. Large leaf, if palmately have good field record. Topographic map is compound, split in half lengthwise and one half essential for the location. It needs to examine is discarded. If pinnately compound, a branch the floral parts carefully, if small by using is only kept. A few leaves may be turned over magnifying lens. The characters should tally to show lower and upper view. If there is bulgy with the literature and pictures of the books. rhizome, needs to cut or dissect longitudinally From various angles, the flower photos require by knife, so that moisture evaporates through to be taken. there. If the specimen is gymnosperms, like Dorsal and ventral leaf view photos are also Abies spectabilis (leaves fall before dry), the essential for the further identification specimens needs to deep in the glycerin before confirmation. Digital camera should have at pressing. Flowers with gamopetalous corollas least 5-mega pixels so that close up image can should have to be pressed a few flowers 54 K. Maden / Our Nature (2004) 2:53-57 separately and some of these split open and accomplished without heat, and those with the spread. If flower is large, cotton padding is aid of artificial heat. Drying with the aid of often helpful to dry quickly. artificial heat is the prevalent method. It is The specimens thus kept inside flimsies, are accomplished by means of heated dry air covered by on either side by blotters and then passing up and through the canal of the it is put herbarium pressure. After press is filled corrugate. Corrugates, often referred to as or all the specimens pressed, the plant press is ventilators, are used in presses when plants closed and pressure applied by means of are dried by means of artificial heat (Lawrence tightening the straps. Hard and dried fruits and 1951). It is as sheet of pasteboard or thin cones- need not preserve and press, but have aluminum metal, with fluted ducts. It provides to keep in special boxes. The final appearance air passages through the press for movement of the specimen depends on how it is pressed of dry heated air. and dried (Jones and Luchsinger 1986). The dryer with the herbarium pressure is covered by mountain survival blanket. It is heat Re-pressing resistant blanket that is attached to stand with The specimens are repressed in the evening clips. At the base (single) for coming and at in the camp. The blotters are changed, if they the tip, for out going air, series ventilations need are moistened. But flimsies need not change. to keep. The best heat source is heater. Stove The specimens are kept with the new blotters. can be used as an alternative source. The usual After blotter, for ventilation and equal heat time period for drying specimens is 12 hours. diffusion, aluminum plates (corrugates 12 X But it depends upon the material; and also dryer set, humidity, the type of heat source, climate, 18 in.) are placed. The process is repeated and temperature affect the drying period. Too for each specimen. Thus racked specimens high a temperature for too long a time period are designated as corrugated-blotter-flimsies will cause a specimen to become brittle and with specimen-blotter-corrugated. Then it is discolored. Too short a drying period or too tied up inside the herbarium pressure or plant low a temperature will keep the specimens, pressure by two straps or belts around the moist to touch, and possibly cause mildew. outside. It is usually constructed of a sturdy Specimens will need to be checked regularly metal, plywood, or wooden grid frame 30 x 46 until dry. A specimen is not dry if it is still limp cm or 12 X 18 in. (Woodland 1997). The when picked up and cool and moist to the touch. herbarium pressure equipment can be The pressures become loose when the plants inexpensively made from wood scraps, old are dry. cardboard boxes, old newspaper, and small The most common method of drying is without applying heat. Plants are placed in rope.The final data is recorded in the computer pressing papers between the blotters of the using Microsoft Excel program, before plant press. No corrugates are used. The press specimens repressed for drying in the field. is locked up for about 24 hours, this is known Thus prepared database is helpful in future as the sweating period.
Recommended publications
  • The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
    The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................
    [Show full text]
  • User Documentation for the Australian National Herbarium Specimen Information Register (ANHSIR)
    1 User Documentation for the Australian National Herbarium Specimen Information Register (ANHSIR) Written by Julie Matarczyk Dataentry Co-ordinator, and Lee Halasz, Spatial Databaser, Australian National Herbarium Centre for Plant Biodiversity Research February 2004 Revised by Maggie Nightingale, Herbarium Registrar Nov 2009 Contents Introduction The five screens in ANHSIR: LABEL, EVENT, UNIT, ITEM and DET The Data Entry Screens: EVENT, UNIT, ITEM and DET The Query Screens: LABEL and EVENT Basic Data Entry – A single Herbarium Specimen The EVENT Screen The UNIT Screen The ITEM Screen The DET Screen Basic Data Entry – More than one sheet/item Basic Data Entry – Multiple items, not all herbarium sheets Data Entry from Field Notebooks Linking records Data Verification Common changes to CANB records: Common changes to CBG records: Linked Records Databasing Living Collections ANBG Living Collections Vouchers Advanced ANHSIR options Public Access Herbarium (Reference Herbarium) ‘duplicates’ Label Printing Geocoding – by Lee Halasz What is a geocode/Why calculate geocodes? Which regions to geocode Geocode accuracy and precision Geocoding resources Geocoding Hints Entering the Geocode Related Fields into ANHSIR Converting grid references to geocodes Troubleshooting… Advanced querying options Centre for Plant Biodiversity Research 2 P:\\ANH\ANH_Resources\Manuals\ANHSIRmanualversion6.doc (Nov 2009) List of Appendices Appendix 1: Function Keys Appendix 2: Useful Web Addresses Appendix 3: Precision codes/Source codes/Herb material codes/Gardens material codes Appendix 3A: Region codes used in ANHSIR Appendix 4: Geocode ready reckoner Appendix 5: Data-basing spirit (and fruit separate) collections with a dummy sheet. Appendix 6: Standard Abbreviations when Databasing Appendix 7: Donor institutes Frequently asked questions… Introduction: The Australian National Herbarium Specimen Information Register (ANHSIR) is a relational database built in Oracle to house information relating to the collections of the Australian National Herbarium (ANH).
    [Show full text]
  • Automated Plant Species Identification— Trends and Future Directions
    REVIEW Automated plant species identificationÐ Trends and future directions Jana WaÈldchen1*, Michael Rzanny1, Marco Seeland2, Patrick MaÈder2 1 Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Thuringia, Germany, 2 Software Engineering for Safety-Critical Systems Group, Technische UniversitaÈt Ilmenau, Ilmenau, Thuringia, Germany * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Current rates of species loss triggered numerous attempts to protect and conserve biodiver- sity. Species conservation, however, requires species identification skills, a competence obtained through intensive training and experience. Field researchers, land managers, edu- cators, civil servants, and the interested public would greatly benefit from accessible, up-to- date tools automating the process of species identification. Currently, relevant technologies, OPEN ACCESS such as digital cameras, mobile devices, and remote access to databases, are ubiquitously Citation: WaÈldchen J, Rzanny M, Seeland M, available, accompanied by significant advances in image processing and pattern recogni- MaÈder P (2018) Automated plant species identificationÐTrends and future directions. PLoS tion. The idea of automated species identification is approaching reality. We review the tech- Comput Biol 14(4): e1005993. https://doi.org/ nical status quo on computer vision approaches for plant species identification, highlight the 10.1371/journal.pcbi.1005993 main research challenges to overcome in providing applicable tools, and conclude with a Editor: Alexander Bucksch, University of Georgia discussion of open and future research thrusts. Warnell School of Forestry and Natural Resources, UNITED STATES Published: April 5, 2018 Author summary Copyright: © 2018 WaÈldchen et al. This is an open Plant identification is not exclusively the job of botanists and plant ecologists.
    [Show full text]
  • Collection and Preparation of Vascular Plant Specimens James P
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 2017 Collection and Preparation of Vascular Plant Specimens James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Collection and Preparation of Vascular Plant Specimens" (2017). Botanical Studies. 12. http://digitalcommons.humboldt.edu/botany_jps/12 This Plant Taxonomy - Systematic Botany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. COLLECTION AND PREPARATION OF VASCULAR PLANT SPECIMENS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California The principal reasons for collecting plants are to Notebook. There are several possibilities here – all the document their occurrence at a particular location and way from a small note pad that fits conveniently in a to provide permanent, representative specimens for shirt pocket or a steno pad to a notebook, waterproof future study. In the case of smaller vascular plants, field note book, or an electronic data storage device, such as annual herbs, the specimen often consists of such as a smart phone. one to several complete individuals. In larger plants, such as trees or shrubs, a specimen usually consists of Maps are needed to provide location data, such as road representative portions of vegetative and reproductive designations, names of counties, latitude and longitude, material.
    [Show full text]
  • Automated Plant Species Identification—Trends and Future Directions
    REVIEW Automated plant species identificationÐ Trends and future directions Jana WaÈldchen1*, Michael Rzanny1, Marco Seeland2, Patrick MaÈder2 1 Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Thuringia, Germany, 2 Software Engineering for Safety-Critical Systems Group, Technische UniversitaÈt Ilmenau, Ilmenau, Thuringia, Germany * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Current rates of species loss triggered numerous attempts to protect and conserve biodiver- sity. Species conservation, however, requires species identification skills, a competence obtained through intensive training and experience. Field researchers, land managers, edu- cators, civil servants, and the interested public would greatly benefit from accessible, up-to- date tools automating the process of species identification. Currently, relevant technologies, OPEN ACCESS such as digital cameras, mobile devices, and remote access to databases, are ubiquitously Citation: WaÈldchen J, Rzanny M, Seeland M, available, accompanied by significant advances in image processing and pattern recogni- MaÈder P (2018) Automated plant species identificationÐTrends and future directions. PLoS tion. The idea of automated species identification is approaching reality. We review the tech- Comput Biol 14(4): e1005993. https://doi.org/ nical status quo on computer vision approaches for plant species identification, highlight the 10.1371/journal.pcbi.1005993 main research challenges to overcome in providing applicable tools, and conclude with a Editor: Alexander Bucksch, University of Georgia discussion of open and future research thrusts. Warnell School of Forestry and Natural Resources, UNITED STATES Published: April 5, 2018 Author summary Copyright: © 2018 WaÈldchen et al. This is an open Plant identification is not exclusively the job of botanists and plant ecologists.
    [Show full text]
  • Pollen Metabarcoding As a Tool for Tracking Long-Distance Insect
    bioRxiv preprint doi: https://doi.org/10.1101/312363; this version posted May 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Pollen metabarcoding as a tool for 2 tracking long-distance insect migrations. 3 4 Tomasz Suchan1†*, Gerard Talavera2,3†, Llorenç Sáez4, Michał Ronikier1, Roger Vila2 5 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, 6 Poland 7 2 Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la 8 Barceloneta 37, ESP-08003 Barcelona, Catalonia, Spain 9 3 Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA 10 4 Systematics and Evolution of vascular plants, Associated unit to CSIC. Unitat de Botànica, 11 Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Catalonia, 12 Spain 13 † TS and GT should be considered joint first authors 14 * Corresponding author: [email protected]; W. Szafer Institute of Botany, Polish Academy 15 of Sciences, Lubicz 46, 31-512 Kraków, Poland 16 Running title: Pollen metabarcoding for tracking insect migrations bioRxiv preprint doi: https://doi.org/10.1101/312363; this version posted May 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Unit 6: Introduction to Plant Taxonomy Topic - Identification, Classification, Nomenclature
    Unit 6: Introduction to plant taxonomy Topic - Identification, Classification, Nomenclature. 23.03.2020 By- Dr. Gaurav Kumar Department of Botany Dyal Singh College Taxonomy is often defined as the ‘science dealing with the study of classification, including its bases, principles, rules and procedures’ (Davis and Heywood, 1963). Simpson (1961) defined systematics as a ‘scientific study of the kinds and diversity of organisms, and of any and all relationships between them’. Taxonomy is a sub discipline of Systematics which is the study of those relationships Taxonomy began about 300 years b.c. by Theophrastus Refer to the figure provided to you in class/social media group Refer to the provided to you in class/social media group Refer to the provided to you in class/social Refer to the provided to you in class/social media group media group Basic Components (Principles) of Systematics Identification: Identification or determination is recognizing an unknown specimen with an already known taxon, and assigning a correct rank and position in an extant classification. In practice, it involves finding a name for an unknown specimen. This may be achieved by: 1-Visiting a herbarium and comparing unknown specimen with duly identified specimens stored in the herbarium. 2-The specimen may also be sent to an expert in the field who can help in the identification. 3-Using various types of literature such as Floras, Monographs or Manuals and making use of identification keys provided in these sources of literature. And further confirmed by comparison with the detailed description of the taxon provided in the literature source.
    [Show full text]
  • Biología De La Conservación De Vella Pseudocytisus Subespecie Paui, Una Planta Amenazada En Aragón
    ISBN: 978-84-89862-79-1 BIOLOGÍA DE LA CONSERVACIÓN DE VELLA PSEUDOCYTISUS SUBESPECIE PAUI, UNA PLANTA AMENAZADA EN ARAGÓN FELIPE DOMÍNGUEZ LOZANO, DAVID GUZMÁN OTANO y JUAN CARLOS MORENO SAIZ (Editores) © Felipe Domínguez Lozano, David Guzmán Otano y Juan Carlos Moreno Saiz © De la edición, Consejo de Protección de la Naturaleza de Aragón I.S.B.N.: 978-84-89862-79-1 Depósito Legal: Z. 1767-11 Edita: Consejo de Protección de la Naturaleza de Aragón Maqueta e imprime: Cometa, S.A. Ctra. Castellón, km. 3,400 50013 ZARAGOZA Índice Presentación ............................................................................................... 7 Preámbulo .................................................................................................. 9 Introducción ............................................................................................... 15 Capítulo 1. El contexto geobotánico ..................................................... 19 Capítulo 2. El panorama conservacionista aragonés ......................... 43 Capítulo 3. Filogenia y taxonomía de Vella L. ..................................... 65 Capítulo 4. Vella pseudocytisus L. en España y el norte de África ..... 91 Capítulo 5. Distribución, censo y hábitat potencial ........................... 119 Capítulo 6. Aproximación a la biología reproductiva ....................... 141 Capítulo 7. Genética de poblaciones .................................................... 163 Capítulo 8. Dinámica demográfica ....................................................... 187 Capítulo
    [Show full text]
  • A Comparison of Honey Bee-Collected Pollen from Working Agricultural Lands Using Light Microscopy and ITS Metabarcoding M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2017 A Comparison of Honey Bee-Collected Pollen From Working Agricultural Lands Using Light Microscopy and ITS Metabarcoding M. D. Smart U.S. Geological Survey Northern Prairie Wildlife Research Center, [email protected] R. S. Cornman U.S. Geological Survey Fort Collins Science Center, [email protected] D. D. Iwanowicz U.S. Geological Survey Leetown Science Center M. McDermott-Kubeczko University of Minnesota J. S. Pettis USDA-ARS Bee Research Laboratory, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Smart, M. D.; Cornman, R. S.; Iwanowicz, D. D.; McDermott-Kubeczko, M.; Pettis, J. S.; Spivak, M. S.; and Otto, C. R.V., "A Comparison of Honey Bee-Collected Pollen From Working Agricultural Lands Using Light Microscopy and ITS Metabarcoding" (2017). Faculty Publications: Department of Entomology. 506. https://digitalcommons.unl.edu/entomologyfacpub/506 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors M. D. Smart, R. S. Cornman, D. D. Iwanowicz, M. McDermott-Kubeczko, J. S. Pettis, M. S. Spivak, and C. R.V. Otto This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/entomologyfacpub/ 506 Environmental Entomology, 2017, 1–12 doi: 10.1093/ee/nvw159 Pollinator Ecology and Management Research A Comparison of Honey Bee-Collected Pollen From Working Agricultural Lands Using Light Microscopy and ITS Metabarcoding M.
    [Show full text]
  • The Nature of the Inferior Ovary in Some Monocotyledonous Families
    Journal of Plant Development ISSN 2065-3158 print / e-ISSN 2066-9917 Vol. 25, Dec 2018: 25-42 Available online: www.plant-journal.uaic.ro doi: 10.33628/jpd.2018.25.1.25 THE NATURE OF THE INFERIOR OVARY IN SOME MONOCOTYLEDONOUS FAMILIES Sherif Mohamed SHARAWY1*, Sayed Farag KHALIFA1 1 Botany Department, Faculty of Science, Ain Shams University, Abbassya 11566, Cairo – Egypt * Corresponding author. E-mail: [email protected] Abstract: The floral vasculature aspects of twenty-four species belonging to six monocotyledonous families are dealt with. These selected taxa include 23 horticulture species cultivated in Egypt and the remainders is among the wild flora of Egypt. A great attention has been focused by phylogenetists on the position of the ovary with respect to the other parts of the flower. In this connection, the nature of the inferior ovary is generally discussed on the basis of two theories; appendicular and axial. It is fortunate that the vascular skeleton can still be regarded as the most conservative character and that it may be rather conclusive in the determination of the nature of the inferior ovary. In the present study, the different patterns of floral vascularization are presented in cumulative tables and figures to facilitate the comparative study. Moreover, an interpretation to the observed variations is also tried to reach at the relations between the taxa studied and to determine the nature of the hypanthium. Keywords: Epigynous flower, floral vasculature, hypanthium, inferior ovary, monocotyledons. Introduction More than other plant part the flower has always received a great attention on telling evolutionary pathways; and of all the floral phenomena that of the inferior ovary has doubtless been extensively discussed [DOUGLAS, 2003; BASSO-ALVES & al.
    [Show full text]
  • IAPT Chromosome Data 30 TAXON 68 (5) • October 2019: 1124–1130
    Marhold & Kucˇera (eds.) • IAPT chromosome data 30 TAXON 68 (5) • October 2019: 1124–1130 IAPT CHROMOSOME DATA IAPT chromosome data 30 Karol Marhold (ed.),1,2 Jaromír Kucˇera (ed.),1 Erton Mendonça de Almeida,3 Lânia I.F. Alves,4 Claudia Araneda-Beltrán,5 Carlos M. Baeza,5 Evgeny V. Banaev,6 Fabiane R.C. Batista,4 N. Ivalú Cacho,7 Olga A. Chernyagina,8 Marely Cuba-Díaz,9 Andrey S. Erst,6,10 Leonardo P. Felix,11 Eliana Regina Forni Martins,12 Maria J. Gomes de Andrade,13 Polina D. Gudkova,10,14 Raghbir Chand Gupta,15 Kuljit Kaur,15 Mandeep Kaur Aulakh,15 Aleksandr A. Korobkov,16 Vera A. Kostikova,6 Violetta V. Kotseruba,16 Denis A. Krivenko,10,17,18 Igor V. Kuzmin,19 Zhi-Min Li,20 Samara S. Matos,13 Enoque Medeiros Neto,11 André L. Melo,21 Elizaveta Yu. Mitrenina,10 Viktor O. Nachychko,22 José Achilles L. Neves,11 José Rubens Pirani,23 Nina S. Probatova,24 María V. Romero-da Cruz,23 Eduardo Ruiz-Ponce,5 Manjit Inder Singh Saggoo,15 Fabiano J. Santos,25 Géssica S. Santos,13 Pollyana K. Silva,4 Vijay Singh,15 Pamela C.S.S. Souza,25 Tod Stuessy,26,27 Alexander P. Sukhorukov,28 Hang Sun,29 Wen-Guang Sun,29,30,31 Alexander N. Tashev,32 Mariya A. Tomoshevich,6 Oscar Toro-Núñez,5 Estrella Urtubey,33 Vera L.C. Vale,34 Mariya S. Voronkova,6 Wei Wang,35 Kunli Xiang35 & Daniela C. Zappi36 1 Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, 845 23 Bratislava, Slovak Republic 2 Department of Botany, Charles University, Benatska 2, 128 01 Praha, Czech Republic 3 Laboratory of plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil 4 Laboratório de Citogenética Vegetal, Instituto Nacional do Semiárido - INSA, Campina Grande, Paraíba, Brazil 5 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile 6 Central Siberian Botanical Garden SB RAS, Zolotodolinskaya Str.
    [Show full text]
  • Developing Biogeographically Based Population Introduction Protocols for At-Risk Willamette Valley Plant Species
    Developing biogeographically based population introduction protocols for at-risk Willamette Valley plant species: Agrostis howellii (Howell’s bentgrass) Aster curtus (white-topped aster), Aster vialis (wayside aster), Delphinium leucophaeum (hot rock larkspur), Delphinium pavonaceaum (peacock larkspur), Erigeron decumbens var. decumbens (Willamette daisy), Horkelia congesta ssp. congesta (shaggy horkelia), Lomatium bradshawii (Bradshaw’s desert parsley), Lupinus sulphureus ssp. kincaidii (Kincaid’s lupine), Montia howellii (Howell’s montia), Sidalcea spp. (Willamette Valley checkermallows) Prepared by Steven D. Gisler Native Plant Conservation Program Oregon Department of Agriculture with contributions by Oregon Department of Agriculture staff for U.S. Fish and Wildlife Service Grant OR-EP-2, segment 13 Acknowledgements: We would like to thank the many people who contributed to the completion of this report. Thanks to Andy Robinson and Kathy Pendergrass (USFWS) for providing funding and encouragement (Grant no. OR-EP-2, segment 13). Kelly Amsberry, Rebecca Currin, and R.J. Meinke contributed to text completion and review, and Melissa Carr provided invaluable assistance in compiling data. Thanks also to the staff, interns and students who provided plant and habitat photos, and to Erin Amsberry Abood for assistance in final report preparation. Contact Information: Robert J. Meinke Kelly Amsberry Native Plant Conservation Program Native Plant Conservation Program Oregon Department of Agriculture Oregon Department of Agriculture Dept. of Botany and Plant Pathology Dept. of Botany and Plant Pathology Oregon State University Oregon State University Corvallis, OR 97331 Corvallis, OR 97331 (541) 737-2317 (541) 737-4333 [email protected] [email protected] Report format: The following species are presented in alphabetical order: Agrostis howellii (Howell’s bentgrass), Aster curtus (white-topped aster), Aster vialis (wayside aster), Delphinium leucophaeum (hot rock larkspur), Delphinium pavonaceaum (peacock larkspur), Erigeron decumbens var.
    [Show full text]