Isolation and Characterization of Agar-Degrading Paenibacillus Spp

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Characterization of Agar-Degrading Paenibacillus Spp Biosci. Biotechnol. Biochem., 67 (5), 1048–1055, 2003 Isolation and Characterization of Agar-degrading Paenibacillus spp. Associated with the Rhizosphere of Spinach Akifumi HOSODA,1 Masao SAKAI,2,† and Shinjiro KANAZAWA2 1Laboratory of Soil Microbiology, Department of Plant Resources, Graduate School of Bioresource and Bioenvironmental Sciences, and 2Laboratory of Soil Microbiology, Department of Plant Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Received November 8, 2002; Accepted January 11, 2003 Agar-degrading bacteria in spinach plant roots culti- which is an alternating polymer of D-galactose and vated in ˆve soils were screened, and four strains of 3,6-anhydro-L-galactose linked by alternating b-(1,4) Paenibacillus sp. were isolated from roots cultivated in and a-(1,3) bonds.12) Two types of agar-degradation three soils. The agar-degrading bacteria accounted for processes have been studied on several agar-degrad- 1.3z to 2.5z of the total bacteria on the roots. In con- ing bacteria. The ˆrst type was identiˆed in studies trast, no agar-degrading colony was detected in any soil on Pseudoalteromonas atlantica ATCC 19292.9,13) (non-rhizosphere soil samples) by the plate dilution P. atlantica hydrolyzes agarose by extracellular method, and thus these agar-degrading bacteria may b-agarase. This enzyme cleaves the b-(1,4) linkage speciˆcally inhabit plant roots. All isolates produced between D-galactopyranose and 3,6-anhydro-L-galac- extracellular agarase, and could grow using agar in the tose to give a series of neoagaro-oligosaccharides. culture medium as the sole carbon source. Zymogram Then, neoagarotetraose, one of the major end analyses of agarase showed that all four isolates products, is cleaved at the central b-linkage by extracellularly secreted multiple agarases (75–160 kDa). neoagarotetraose hydrolase to yield neoagarobiose. In addition, the isolates degraded not only agar but also Finally, neoagarobiose is degraded by periplasmic various plant polysaccharides, i.e., cellulose, pectin, a-neoagarobiose hydrolase to the D-galactose and starch, and xylan. 3,6-anhydro-L-galactose, which are metabolized by intracellular enzymes. The other type of agar-degra- Key words: rhizosphere; agarase; Paenibacillus; dation process involves the cleavage of a-(1,3) link- zymogram age in agarose by extracellular a-agarase,3) yielding a series of agaro-oligosaccharides. The agar-degrada- Several types of agarase-producing bacteria tion process of Alteromonas agarlyticus strain GJIB that degrade and utilize agar have been isolated. involves two enzymes: an a-agarase that cleaves the We previously found agar-degrading bacteria in a-(1,3) linkages and a b-galactosidase speciˆc for the rhizobacteria from a vegetable cropping soil, but we cleavage of the 3,6-anhydro-L-galactose units at the could not obtain the pure culture of the bacteria.1) reducing end. Agarotriose was the smallest product Generally, most previously reported agar-degrading detected in this system. bacteria were isolated from marine environments. A A few non-marine agar-degrading bacteria have wide range of agar-degrading bacteria, including been reported, including Cytophaga sp. and Altero- Alteromonas sp.,2,3) Bacillus cereus,4) Cytophaga monas sp.14) isolated from fresh water, and Bacillus sp.,5) Pseudoalteromonas sp.,6,7) Pseudomonas sp.8–10) sp.,15) Cytophaga sp.,16,17) and Streptomyces coe- and Vibrio sp.,11) have been isolated from marine licolor18) isolated from soils. From sewage, a Gram- environments. Since agar is a polysaccharide pro- negative bacterium (unidentiˆed) has been isolated.19) duced by marine red algae, it is natural that most In addition, we have recently reported the presence agar-degrading bacteria are inhabitants of marine of agar-degrading bacteria in plant rhizospheres. habitats. Agar-degrading bacteria are considered to There are various polysaccharides in plant utilize agar as a carbon and energy source to inhabit rhizospheres. Studies on such agar-degrading marine environments. rhizobacteria may provide a clue to the ecology of Agar is composed of two fractions, agarose and non-marine agar-degrading bacteria. agaropectin. Agarose, the main constituent, is a In this study, we isolated agar-degrading bacteria neutral polysaccharide that forms a linear chain from rhizospheres of spinach plants cultivated in structure consisting of repeating units of agarobiose, several soil samples, measured the activity of agarase † To whom correspondence should be addressed. TelWFax: +81-92-642-2863; E-mail: msakai@agr.kyushu-u.ac.jp Isolation of Agar-degrading Paenibacillus spp. from Rhizosphere 1049 produced by these bacteria, and did zymogram tion and degradation of polysaccharides, agar analysis by activity staining. (Wako), CM-cellulose (Sigma Chemical Co., St. Louis, Mo, USA), chitin (NACALAI TESQUE, Materials and Methods INC., Kyoto, Japan), pectin (Sigma), starch (Sigma), and xylan (NACALAI). Agar (2 gWl), CM-cellulose Screening and isolation of agar-degrading bacter- (5 gWl), chitin (4 gWl), pectin (2 gWl), starch (2 gWl), ia. Soil was collected from ˆve vegetable cropping and xylan (5 gWl) were added to a basal medium (0.6 g ˆelds located in southwest Japan. These samples yeast extract, 1.0 g (NH4)2SO4,1.1gMgSO4・7H2O, consisted of a sandy loam (Futsukaichi soil; pH 6.9; 7.0 g K2HPO4,2.0gKH2PO4, and 1.0 l distilled 1.5z organic matter) located in Fukuoka Prefecture; water (pH 7.0)), and the resulting solution was used a silty clay loam located in Kagoshima Prefecture for the polysaccharide test. In the polysaccharide (Kagoshima soil; pH 6.7; 2.6z organic matter); a utilization test, isolates were inoculated in the liquid sandy clay located in Kumamoto Prefecture medium and cultured at 289C for one week in Erlen- (Minamata soil; pH 5.9; 2.0z organic matter); a meryer ‰asks, and the turbidity was measured at light clay (Ashikita soil; pH 6.2; 1.4z organic OD600 to evaluate the growth of the isolates. matter) located in Kumamoto Prefecture; and a loam In the polysaccharide degradation test, the above (Isahaya soil; pH 6.0; 1.2z organic matter) located basal medium supplemented with the polysaccharides in Nagasaki Prefecture. All ˆve soils had been was solidiˆed using gellan gum (15 gWl) and the solid cropped with vegetables. Five replicate soil cores media were used. Isolates were inoculated on the were obtained from each sampling site, pooled, media and cultured at 289C for one week. Degrada- homogenized, and stored without drying at 49C tion of agar and starch was detected by staining with before being used for enrichment and isolation of Lugol's solution;18,20) degradation of CM-cellulose, agar-degrading bacteria. Agar (Wako Pure Chemical chitin, and xylan was detected by staining with Industries, Ltd., Osaka, Japan) dissolved in distilled Congo Red solution;21) and degradation of pectin was water and sterilized was added to each soil sample detected by CTAB staining.22) andadjustedto0.1z (wWw), and the soil water con- Other phenotypic characterizations of the isolates tent was adjusted to 50z (wWw, waterWdry soil). were done as described by Shintani23) and Berge These agar-supplemented soil samples were packed in et al.24) pots and incubated at 289C for seven days before plant cultivation. Phylogenetic analysis of isolates based on 16S Spinach plants (Spinacea oleracea L. ``Atlas'') rDNA sequencing. We did 16S rDNA sequence anal- were cultivated in pots containing the soils in a ysis on four agar-degrading isolates from spinach growth chamber with a relative humidity of 70z at roots, strains M-2b, O-3b, O-4c, and St-4. Bacteria 209C. The daily light schedule consisted of 16 h of for DNA extraction were grown for 3 days at 289C light and 8 h of darkness, and the light intensity was on 0.1 TSA medium. A single colony of each isolate 250 mmol m-2 s-1. After growth for 21 days, plants was removed with a sterile toothpick, resuspended in were harvested and the roots were excised and shaken 20 ml of sterile distilled water, and heated at 959Cfor in a 10 mM phosphate buŠer solution (pH 7.0) to 10 min to lyse the cells. The lysate was then cooled on remove soil particles. The soil-free root samples were ice, brie‰y centrifuged with a microcentrifuge, and cut into fragments 3–5 mm long. The treated roots used for polymerase chain reaction (PCR) ampliˆca- (1.0 g) were then placed in tubes containing 5 ml of a tion. fresh buŠer solution, and glass beads 3 mm in The DNA coding for the 16S rRNA of each isolate diameter (2.5 g) were added. The samples were was ampliˆed with primers 8–27f (5?-AGAGTTTG- shaken on a Vortex mixer (5 min, full speed). The ATCCTGGCTCAG-3?) and 1543–1525r (5?-AAAG- root suspension was serially diluted, and 0.1-ml dilut- GAGGTGATCCAGCC-3?). These primers were ed portions were spread on 0.1 TSA agar medium designed on the basis of the conserved bacterial that contained (per liter) 1.7 g of peptone, 0.3 g of sequences at the 5? and 3? ends of the 16S rRNA soyton,0.25gofglucose,0.25gofK2HPO4,0.5gof gene, which allowed ampliˆcation of almost the NaCl, and 15 g of agar. For the preparation of non- entire gene.25) Ampliˆcation was done as follows: rhizosphere soil samples, the soils were maintained each mixture contained 2 ml of lysed cell suspension under the same conditions and serial dilutions were in 50 mlofTaq buŠer containing 2 mM Mg2+,1.2mM plated onto 0.1 TSA agar. The plates were incubated of each primer, each deoxynucleoside triphosphate at at 289C for 10 days. Colonies in the cultured plates a concentration of 0.2 mM,and1.25UofTaq DNA were counted, and agar-degrading bacteria in colo- polymerase (TaKaRa Bio,Inc., Shiga, Japan).
Recommended publications
  • View PDF Version
    Food & Function View Article Online PAPER View Journal | View Issue Chia seed mucilage – a vegan thickener: isolation, tailoring viscoelasticity and rehydration Cite this: Food Funct., 2019, 10, 4854 Linda Brütsch, Fiona J. Stringer, Simon Kuster, Erich J. Windhab and Peter Fischer * Chia seeds and their mucilage gels provide a nutritionally and functionally promising ingredient for the food and pharmaceutical industry. Application and utilization of the gel remain limited due to the tightly adhesion of the mucilage to the seeds, which affects the organoleptic properties, control of concen- tration and structuring possibilities. To exploit the full potential of chia mucilage gels as a functional ingre- dient calls for separation and purification of the gel. Herein, the gel was extracted by centrifugation and characterized rheologically and microscopically to link the viscoelastic properties to the structural pro- perties. Subsequently, the gel was dried employing three different methods for facilitated storage and prolonged shelf life. The dried gels were readily soluble and its viscoelastic properties were fully regener- Creative Commons Attribution 3.0 Unported Licence. ated upon rehydration demonstrating its potential to envisage industrial applications. The viscoelastic chia mucilage demonstrated shear-thinning behavior with complete relaxation upon stress removal. The gel’s Received 26th January 2018, elasticity was enhanced with increasing mucilage concentration resulting in a highly tunable system. The Accepted 13th July 2019 extractable and rehydratable functional chia gel is a viable candidate as additive for the development of DOI: 10.1039/c8fo00173a products requiring specific viscoelastic properties. Addition of the gel enhances the nutritional profile rsc.li/food-function without interfering with the organoleptic properties.
    [Show full text]
  • Mucilage Problem in the Semi-Enclosed Seas: Recent Outbreak in the Sea of Marmara
    ISSN: 2148-9173 Vol: Issue:4 December 2021 ,QWHUQDWLRQDO-RXUQDORI(QYLURQPHQWDQG*HRLQIRUPDWLFV ,-(*(2 LVDQLQWHUQDWLRQDO PXOWLGLVFLSOLQDU\SHHUUHYLHZHGRSHQDFFHVVMRXUQDO Mucilage Problem in the Semi-Enclosed Seas: Recent Outbreak in the Sea of Marmara Başak SAVUN-HEKİMOĞLU, Cem GAZİOĞLU &KLHILQ(GLWRU 3URI'U&HP*D]LR÷OX &R(GLWRUV 3URI'U'XUVXQ=DIHUùHNHU3URI'UùLQDVL.D\D 3URI'U$\úHJO7DQÕNDQG$VVLVW3URI'U9RONDQ'HPLU (GLWRULDO&RPPLWWHH December $VVRc3URI'U$EGXOODK$NVX 75 $VVLW3URI'U8÷XU$OJDQFÕ 75 3URI'U%HGUL$OSDU 75 Assoc. Prof. Dr. Aslı Aslan (US), 3URI'U/HYHQW%DW 75 3URI'U3DXO%DWHV 8. øUúDG%D\ÕUKDQ 75 3URI'U%OHQW %D\UDP 75 3URI'U/XLV0%RWDQD (6 3URI'U1XUD\dD÷ODU 75 3URI'U6XNDQWD'DVK ,1 'U6RRILD7 (OLDV 8. 3URI'U$(YUHQ(UJLQDO 75 $VVRF3URI'U&QH\W(UHQR÷OX 75 'U'LHWHU)ULWVFK '( 3URI 'UdL÷GHP*|NVHO 75 3URI'U/HQD+DORXQRYD &= 3URI'U0DQLN.DOXEDUPH ,1 'U+DNDQ.D\D 75 $VVLVW3URI'U6HUNDQ.NUHU 75 $VVRF3URI'U0DJHG0DUJKDQ\ 0< 3URI'U0LFKDHO0HDGRZV =$ 3URI 'U 1HEL\H 0XVDR÷OX 75 3URI 'U 0DVDIXPL 1DNDJDZD -3 3URI 'U +DVDQ g]GHPLU 75 3URI 'U &KU\VV\3RWVLRX *5 3URI'U(URO6DUÕ 75 3URI'U0DULD3DUDGLVR ,7 3URI'U3HWURV3DWLDV *5 3URI'U (OLI6HUWHO 75 3URI'U1NHW6LYUL 75 3URI'U)VXQ%DOÕNùDQOÕ 75 3URI'U8÷XUùDQOÕ 75 'X\JXhONHU 75 3URI'U6H\IHWWLQ7Dú 75 $VVRF3URI'UgPHU6XDW7DúNÕQ TR Assist. Prof. Dr. Tuba Ünsal (TR), Dr. Manousos Valyrakis (UK), 'UøQHVH9DUQD /9 'U3HWUD9LVVHU 1/ 3URI'U6HOPDhQO 75 Assoc. Prof. Dr. Oral Yağcı (TR), 3URI'U0XUDW<DNDU 75 Assoc. Prof. Dr. İ. Noyan Yılmaz (AU); $VVLW3URI'U6LEHO=HNL 75 $EVWUDFWLQJ DQG ,QGH[LQJ 75 ',=,1 '2$- ,QGH[ &RSHUQLFXV 2$-, 6FLHQWLILF ,QGH[LQJ 6HUYLFHV ,QWHUQDWLRQDO 6FLHQWLILF ,QGH[LQJ-RXUQDO)DFWRU*RRJOH6FKRODU8OULFK V3HULRGLFDOV'LUHFWRU\:RUOG&DW'5-,5HVHDUFK%LE62%,$' International Journal of Environment and Geoinformatics 8(4): 402-413 (2021) Review Article Mucilage Problem in the Semi-Enclosed Seas: Recent Outbreak in the Sea of Marmara Başak Savun-Hekimoğlu* , Cem Gazioğlu Institute of Marine Sciences and Management, İstanbul University, İstanbul, Turkey * Corresponding author: B.
    [Show full text]
  • Mucilage in Yellow Mustard (Brassica Hirta) Seeds
    Food Structure Volume 5 Number 1 Article 17 1986 Mucilage in Yellow Mustard (Brassica Hirta) Seeds I. R. Siddiqui S. H. Yiu J. D. Jones M. Kalab Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure Part of the Food Science Commons Recommended Citation Siddiqui, I. R.; Yiu, S. H.; Jones, J. D.; and Kalab, M. (1986) "Mucilage in Yellow Mustard (Brassica Hirta) Seeds," Food Structure: Vol. 5 : No. 1 , Article 17. Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol5/iss1/17 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. FOOD MICROSTRUCTURE, Vol. 5 (1986), pp. 157-162 0730-54 19/86$ I. 00 •. OS SEM, Inc., AMF O'Hare (Chicago), IL 60666- 0507 U.S.A . MUCILAGE IN YELLOW MUSTARD (BRASSICA H I RT A) SEEDS I. R. Siddiqui. S. H. V!u, J . 0. Jones, and M. Kal.ib Food Resea r ch Cen tre, Research Branch, Agriculture Canada Ottawa, On tario, Canada KlA OC6 Introduction Release of mucJ !age fr011 yellow JDUstard (Brass lea Seeds of the genus Brass i ca arc known to contain hirta, also IOlown as Sinapis alba) seed coats (hulls) varying a.ounts of •ucilage. The 110cf I age Is of particu­ was studied by optical and scanning electron •icroscopy. lar Importance in -.!stard seeds because it contributes Mi crographs were obtained of the aucilage which had to the consistency of prepared lllllstard (Weber et a l.
    [Show full text]
  • Insights Into the Ph-Dependent, Extracellular Sucrose Utilization and Concomitant Levan Formation by Gluconobacter Albidus TMW 2.1191
    Antonie van Leeuwenhoek (2020) 113:863–873 https://doi.org/10.1007/s10482-020-01397-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Insights into the pH-dependent, extracellular sucrose utilization and concomitant levan formation by Gluconobacter albidus TMW 2.1191 Frank Jakob . Clara Gebrande . Regina M. Bichler . Rudi F. Vogel Received: 18 December 2019 / Accepted: 20 February 2020 / Published online: 4 March 2020 Ó The Author(s) 2020 Abstract Many bacteria and archaea produce the The glucose release and formation of high molecular polydisperse fructose polymer levan from sucrose weight levans ([ 3.5 kDa) from 0.1 M initial sucrose upon biofilm formation via extracellular levansucrases was comparable between pH * 4.3–5.7 using equal (EC 2.4.1.10). We have investigated levansucrase- amounts of released levansucrase. Hence, this type of release and -activities as well as molecular size of the levansucrase appears to be structurally adapted to levan formed by the acetic acid bacterium Glu- changes in the extracellular pH and to exhibit a similar conobacter albidus TMW 2.1191 at varying environ- total activity over a wide acidic pH range, while it mental pH conditions to obtain insight in the produced higher amounts of larger levan molecules at ecological role of its constitutively expressed levan- higher production pH and sucrose concentrations. sucrase and the produced levan. A buffer system was These findings indicate the physiological adaptation of established enabling the recovery of levansucrase- G. albidus TMW 2.1191 to efficient colonisation of containing supernatants from preincubated cell sus- sucrose-rich habitats via released levansucrases pensions at pH 4.3–pH 5.7.
    [Show full text]
  • Polysaccharide Composition of the Mucilage of Azolla Algal Packets
    Symbiosis, 24 (1998) 303-314 303 Balaban, Philadelphia/Rehovot Polysaccharide Composition of the Mucilage of Azolla Algal Packets C. FORNil*, A HAEGI2, and M. DEL GALL03 1 Dipartimento di Biologia, Uniuersiia di Roma "Tor Verga ta", Via della Ricerca Scienttica, 00133 Rome, Italy, Fax. +39-6-202-3500, Tel. +39-6-7259-4345; Istituto Sperimentale per la Patologia Vegetale, Via G.C. Bertero 22, 00156 Rome, Italy; and 3Dipartimento di Biologia di Base ed Applicata, Unioersita dell 'Aquila, Via Vetoio, Coppiio, L 'Aquila, Italy Received June 27, 1997; Accepted November 23, 1997 Abstract Algal packet mucilage of different species of Azolla was analysed for their polysaccharide content and composition. The mucilage was composed, as shown by HPLC analyses, of glucose, galactose and fucose, while rhamnose was present only in A. pinnata var. imbricaia, A. caroliniana, A. rubra and A. filiculoides. Treatments of the fern with antibiotics to which Anabaena and/ or bacteria are sensitive, did not change the qualitative composition of polysaccharides, but altered the amount of single monosaccharides. Fucose was the most abundant monosaccharide, both in treated and in untreated plants, suggesting its plant origin. The amount of glucose and galactose in erythromycin treated Azolla decreased, suggesting that these monosaccharides are produced both by Anabaena and by bacteria. Lectin binding was observed microscopically using fluorescein isothiocyanate-labelled lectins. Algal packet polysaccharides of untreated plants had glucose as hapten, which was also revealed on the surface of both Anabaena and bacteria. Galactose was a hapten both of the mucilage and of the bacteria. Hypotheses about the contribution of each component of the symbiosis to the mucilage production are put forward.
    [Show full text]
  • Identification of Nitrogen Fixation Genes in Lactococcus Isolated From
    microorganisms Article Identification of Nitrogen Fixation Genes in Lactococcus Isolated from Maize Using Population Genomics and Machine Learning Shawn M. Higdon 1 , Bihua C. Huang 2,3, Alan B. Bennett 1 and Bart C. Weimer 2,3,* 1 Department of Plant Sciences, University of California, Davis, CA 95616, USA; [email protected] (S.M.H.); [email protected] (A.B.B.) 2 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; [email protected] 3 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA * Correspondence: [email protected] Received: 10 November 2020; Accepted: 17 December 2020; Published: 20 December 2020 Abstract: Sierra Mixe maize is a landrace variety from Oaxaca, Mexico, that utilizes nitrogen derived from the atmosphere via an undefined nitrogen fixation mechanism. The diazotrophic microbiota associated with the plant’s mucilaginous aerial root exudate composed of complex carbohydrates was previously identified and characterized by our group where we found 23 lactococci capable of biological nitrogen fixation (BNF) without containing any of the proposed essential genes for this trait (nifHDKENB). To determine the genes in Lactococcus associated with this phenotype, we selected 70 lactococci from the dairy industry that are not known to be diazotrophic to conduct a comparative population genomic analysis. This showed that the diazotrophic lactococcal genomes were distinctly different from the dairy isolates. Examining the pangenome followed by genome-wide association study and machine learning identified genes with the functions needed for BNF in the maize isolates that were absent from the dairy isolates. Many of the putative genes received an ‘unknown’ annotation, which led to the domain analysis of the 135 homologs.
    [Show full text]
  • Microhydrological Niches in Soils: How Mucilage and EPS Alter The
    Published June 27, 2019 Original Research Core Ideas Microhydrological Niches in Soils: • Plant mucilage and bacterial How Mucilage and EPS Alter the extracellular polymeric substances (EPS) prevent the breakup of the soil Biophysical Properties of the Rhizosphere liquid phase. • Formation of continuous structures and Other Biological Hotspots buffers soil hydraulic properties. Pascal Benard,* Mohsen Zarebanadkouki, Mathilde Brax, • The release of viscous polymeric substances represents a universal Robin Kaltenbach, Iwan Jerjen, Federica Marone, strategy. Estelle Couradeau, Vincent J.M.N.L. Felde, Anders Kaestner, and Andrea Carminati Plant roots and bacteria are capable of buffering erratic fluctuations of water content in their local soil environment by releasing a diverse, highly polymeric blend of substances (e.g. extracellular polymeric substances [EPS] and mucilage). Although this concept is well accepted, the physical mechanisms by which EPS and mucilage interact with the soil matrix and determine the soil water dynamics remain unclear. High-resolution X-ray computed tomography revealed that upon P. Benard, M. Zarebanadkouki, and A. Car- drying in porous media, mucilage (from maize [Zea mays L.] roots) and EPS (from minati, Faculty for Biology, Chemistry, and Earth Sciences, Chair of Soil Physics, Univ. of intact biocrusts) form filaments and two-dimensional interconnected structures Bayreuth, Universitätsstraße 30, 95447 Bay- spanning across multiple pores. Unlike water, these mucilage and EPS structures reuth, Bavaria, Germany; P. Benard, Faculty connecting soil particles did not break up upon drying, which is explained by of Agricultural Sciences, Group of Soil Hydro- logy, Univ. of Göttingen, Büsgenweg 2, 37077 the high viscosity and low surface tension of EPS and mucilage.
    [Show full text]
  • Uptake of Metal Ions from Solution by Inactivated Cells of Cyanobacteria J.L
    UPTAKE OF METAL IONS FROM SOLUTION BY INACTIVATED CELLS OF CYANOBACTERIA J.L. Gardea-Torresdey1,*, J.L. Arenas2, R. Webb2, K.J. Tiemann1, and J.H. Gonzalez1, 1Department of Chemistry, The University of Texas at El Paso, El Paso, TX, 79968, Phone 915- 747-5359, FAX: 915-747-5748, and 2Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968 ABSTRACT Some species of cyanobacteria have the ability to grow under stress conditions that would kill many other bacteria. Solutions of 0.25 mM Cu2+ were inoculated with the cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 with the idea that these cyanobacteria may develop certain defense mechanisms allowing their survival in such stressed environments. Transmission electron microscopy showed that Synechocystis sp. grown in 0.25 mM copper(II) developed a filamentous sheath around the cell wall, which could be responsible for binding copper ions on the cell surface. The presence of copper adsorbed by Synechocystis sp. was corroborated using environmental scanning electron microscopy equipped with an x-ray energy-dispersive spectrometer. Synechococcus has the ability to grow in mass quantity under ideal conditions, providing usable biomass at a minimal effort. Using lyophilized biomass grown under normal conditions, Synechococcus was tested for its potential to bind copper(II), lead(II), and nickel(II) ions from solution. Batch experiments were performed to determine the optimum binding pH, time dependency, and metal binding capacities for copper(II), lead(II), and nickel(II), along with desorption of the metal bound. The biomass studied showed a high affinity for all metal ions as the pH increased from two to six with optimum binding occurring at pH 5.
    [Show full text]
  • Determination of Mucilage Content of Mullein (Verbascum Songaricum) Populations
    Fatemeh Jamshidi kia et al /J. Pharm. Sci. & Res. Vol. 9(12), 2017, 2641-2643 Determination of Mucilage Content of Mullein (Verbascum songaricum) Populations Fatemeh Jamshidi kia1, Karamatollah Saeidi1, Zahra Lorigooini 2* 1 Department of horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. *2Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. Abstract: Mullein genus is the largest genus of Scrophulariaceae family that has wide natural habitat in Southwestern of Iran. In this study, 7 ecotypes of Verbascum songaricum were collected from southwest of Iran for determination of mucilage content. The amount of mucilage was measured using hot extraction method. Results revealed that the content of mucilage was different among Verbascum songaricum ecotypes. The highest and lowest content of mucilage was obtained from Shirmard ecotype (4.26 mg/g DW) and Kallar ecotype (0.16 mg/g DW). The correlation analysis showed that there was a significant negative correlation between mucilage and plant habitat elevation. In general, our findings revealed that there was a significant difference among ecotypes collected from different regions in the southwest of Iran in terms of mucilage content. Keywords: Scrophulariaceae, Verbascum songaricum, Mucilage, Hot extraction INTRODUCTION plants. Identification of habitats and their impact on the The use of plants for treating the diseases dates back to the yield of herbs is effective as well as domestication and mankind birth on earth. Medicinal plants are frequently preservation of genetic diversity. The objective of this used in various medical, industrial, agricultural, nutritional study was to determine the mucilage content in V. environments and a great many of the other fields [1].
    [Show full text]
  • Field Guide to Algae and Other “Scums” in Ponds, Lakes, Streams and Rivers
    The Boone and Kenton County Conservation Districts, Burlington, KY The Campbell County Conservation District, Alexandria, KY Field guide to algae and other “scums” in ponds, lakes, streams and rivers Miriam Steinitz Kannan and Nicole Lenca Northern Kentucky University Field Guide to algae and other “scums” TABLE OF CONTENTS Page Introduction Purpose of the guide—How to use the guide 3 Floating Macroscopic Plants Duckweeds (Lemna, Spirodella) 4 Watermeal (Wolffia) 4 Waterferns (Azolla) 4 Floating Cyanobacteria (Blue-Green Algae) Microcystis 5 Aphanizomenon 6 Anabaena 7 Floating or attached Cyanobacteria (Blue-Green Algae) Oscillatoria, Lyngbya, Phormidium, Plankthotrix 8 Attached Cyanobacteria (Blue-Green Algae) Nostoc 9 Euglena and other flagellated algae Euglena, Phacus, Dinobryon, Prymnesium and Dinoflagellates 10 Diatom Blooms 11 Filamentous Green Algae Spirogyra, Mougeotia and Zygnema 12 Cladophora and Hydrodictyon 13 Bacterial Scums Iron Bacteria -Sphaerotilus 14 Protozoan Scums 15 Zooplankton scums 16 Algae control methods 17 Recommended Web sites 18 Acknowledgements 19 2 Introduction Purpose of this Guide This guide is intended for individuals who work with farm ponds, for watershed groups, homeowners and anyone interested in quickly identifying an algal bloom or scum that appears in a freshwater system. Such blooms usually appear during the summer and fall in temperate regions. Most blooms are the result of nutrient enrichment of the waterway. Of significant concern are blue-green algal blooms (cyanobacteria). Some of these produce liver and/or brain toxins that can be lethal to most fish and livestock. Some of the toxins can also be carcinogenic. The macroscopic appearance of many different genera of algae can be similar and therefore field identification must be verified by using a compound microscope.
    [Show full text]
  • Development and Characterization of Probiotic Mucilage Based Edible Films for the Preservation of Fruits and Vegetables
    www.nature.com/scientificreports OPEN Development and characterization of probiotic mucilage based edible flms for the preservation of fruits and vegetables Seyed Mohammad Davachi1, Neethu Pottackal2, Hooman Torabi1 & Alireza Abbaspourrad1* There is growing interest among the public and scientifc community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible flms, we explored the addition of probiotics to the seed mucilage flms of quince, fax, and basil. These mucilages are natural and compatible blends of diferent polysaccharides that have demonstrated medical benefts. All three seed mucilage flms exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from fax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage flms. These flms efectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic flms showed the best mechanical, physical, morphological and bacterial viability. This is the frst report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics. Troughout the past decade, the human microbiome has received increasing attention in both the medical and scientifc community as well as the general public. Te microbiome consists of the bionetwork of commensal, symbiotic, and pathogenic microorganisms residing in the body 1.
    [Show full text]
  • Bacterial Extracellular Polymeric Substances Amplify Water Content Variability at the Pore Scale
    ORIGINAL RESEARCH published: 19 September 2018 doi: 10.3389/fenvs.2018.00093 Bacterial Extracellular Polymeric Substances Amplify Water Content Variability at the Pore Scale Yi-Syuan Guo 1, Jessica M. Furrer 2, Andrea L. Kadilak 1, Hector F. Hinestroza 2, Daniel J. Gage 3, Yong Ku Cho 1 and Leslie M. Shor 1,4,5* 1 Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, United States, 2 Department of Physics and Engineering, Benedict College, Columbia, SC, United States, 3 Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT, United States, 4 Center for Environmental Sciences & Engineering, University of Connecticut, Storrs, CT, United States, 5 School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia The function of microbial communities in soil is inextricably linked with the complex physical, chemical, and biological structure of the soil itself. Pore-scale water content controls the hydraulic connectivity of microbial communities and microbes’ access to Edited by: aqueous and gaseous substrates. In turn, soil bacteria directly influence local moisture Wilfred Otten, Cranfield University, United Kingdom conditions through the secretion of extracellular polymeric substances (EPS). However, Reviewed by: the effect of a soil’s physical geometry on EPS-mediated water retention is not well Eiko Eurya Kuramae, understood. In this study, we systematically measured the rate and extent of water Netherlands Institute of Ecology (NIOO-KNAW), Netherlands evaporation from pore structures as a function of both EPS concentration and pore size. Christophe Darnault, Three different chamber types were employed: (i) glass capillary tubes (1.2 mm pore Clemson University, United States diameter) to represent a uniform macropore geometry; (ii) emulated soil micromodels *Correspondence: (pore widths ∼10 to >300 µm) to represent an aggregated sandy loam pore geometry; Leslie M.
    [Show full text]