Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma Published OnlineFirst January 4, 2019; DOI: 10.1158/1078-0432.CCR-18-2363 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma Hongxia Xu1,2, Huiying Han1, Sha Song1, Nengjun Yi3, Chen'ao Qian4, Yingchun Qiu1, Wenqi Zhou1, Yating Hong5, Wenyue Zhuang6, Zhengyi Li7, Bingzong Li5, and Wenzhuo Zhuang1 Abstract Purpose: How exosomal RNAs released within the bone Results: We identified that PSMA3 and PSMA3-AS1 in MSCs marrow microenvironment affect proteasome inhibitors' (PI) could be packaged into exosomes and transferred to myeloma sensitivity of multiple myeloma is currently unknown. This cells, thus promoting PI resistance. PSMA3-AS1 could form an study aims to evaluate which exosomal RNAs are involved and RNA duplex with pre-PSMA3, which transcriptionally promot- by which molecular mechanisms they exert this function. ed PSMA3 expression by increasing its stability. In xenograft Experimental Design: Exosomes were characterized by models, intravenously administered siPSMA3-AS1 was found dynamic light scattering, transmission electron microscopy, and to be effective in increasing carfilzomib sensitivity. Moreover, Western blot analysis. Coculture experiments were performed to plasma circulating exosomal PSMA3 and PSMA3-AS1 derived assess exosomal RNAs transferring from mesenchymal stem from patients with multiple myeloma were significantly asso- cells (MSC) to multiple myeloma cells. The role of PSMA3-AS1 ciated with PFS and OS. in PI sensitivity was further evaluated in vivo. To determine the Conclusions: This study suggested a unique role of exoso- prognostic significance of circulating exosomal PSMA3 and mal PSMA3 and PSMA3-AS1 in transmitting PI resistance from PSMA3-AS1, a cohort of patients with newly diagnosed multiple MSCs to multiple myeloma cells, through a novel exosomal myeloma was enrolled to study. Cox regression models and PSMA3-AS1/PSMA3 signaling pathway. Exosomal PSMA3 and Kaplan–Meier curves were used to analyze progression-free PSMA3-AS1 might act as promising therapeutic targets for PI survival (PFS) and overall survival (OS). resistance and prognostic predictors for clinical response. mechanisms underlying proteasome inhibitor (PI) resistance Introduction have been studied: genetic mutations, gene expression signatures, copy number abnormalities, and bone marrow microenviron- Multiple myeloma is a malignancy of the plasma cell charac- ment (4). Nevertheless, multiple myeloma is a multifaceted terized by proliferation of plasma cell clones (1). The proteasome disease related to genetic, epigenetic, and chromosomal altera- inhibitor bortezomib has shown promise in the treatment of tions, and the mechanisms underlying PI resistance in multiple multiple myeloma (2). However, its therapeutic activity was myeloma remain elusive. severely impeded by bortezomib resistance (3). Multifactorial The proteasome is a 26S enzyme complex that consists of a 19S regulatory complex and a core 20S catalytic complex. The 20S complex is composed of two rings of seven a subunits and two 1 Department of Cell Biology, School of Biology & Basic Medical Sciences, rings of seven b subunits (5). PIs could slightly inhibit the peptidyl Soochow University, Suzhou, China. 2Xiangyang No.1 People's Hospital, Hubei 3 glutamyl–like activity at the b1 subunit (PSMB6) and mainly University of Medicine, Xiangyang, China. Department of Biostatistics, Univer- b sity of Alabama at Birmingham, Birmingham, Alabama. 4Department of Bioin- target the chymotrypsin-like (ChT-L) activity of 5 subunit formatics, School of Biology & Basic Medical Sciences, Soochow University, (PSMB5; refs. 6, 7). The mutations in b5 subunit or the increased Suzhou, China. 5Department of Haematology, the Second Affiliated Hospital of expression of b5 subunit was detected in bortezomib-resistant Soochow University, Suzhou, China. 6Department of Molecular Biology, School hematologic tumor cell lines (8). However, the b5 mutations and 7 of Laboratory Medicine of Beihua University, Jilin, China. Department of Clinical overexpression are absent in clinical samples derived from borte- Examination Basis, Laboratory Academy of Jilin Medical College, Jilin, China. zomib-resistant patients (9, 10). Therefore, the b5 subunit dysre- Note: Supplementary data for this article are available at Clinical Cancer gulation may not be uniquely responsible for PI resistance. It is Research Online (http://clincancerres.aacrjournals.org/). conceivable that other mechanisms could be associated with PI H. Xu and H. Han contributed equally to this article. resistance. Corresponding Authors: Wenzhuo Zhuang, Soochow University, Ren Ai Road The bone marrow microenvironment activates many pathways 199, Suzhou 215123, China. Phone: 8651-2627-23369; Fax: 8651-2658-80103; leading to disease progression. MSCs support tumor cell growth, E-mail: [email protected]; and Bingzong Li, The Second Affiliated metastasis, and evasion of the immune system (11). The inter- Hospital of Soochow University, San Xiang Road 1055, Suzhou 215006, China. action between MSCs and myeloma cells performs a critical role in Phone: 8651-2677-84069; E-mail: [email protected] multiple myeloma pathogenesis, progress, and chemotherapy doi: 10.1158/1078-0432.CCR-18-2363 resistance (12, 13). These findings indicate a need for developing Ó2019 American Association for Cancer Research. novel drugs to counteract these cancer–stroma interactions. www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst January 4, 2019; DOI: 10.1158/1078-0432.CCR-18-2363 Xu et al. Translational Relevance Materials and Methods Patient samples PI resistance is a major challenge for multiple myeloma. Samples were taken from patients with newly diagnosed mul- The bone marrow microenvironment promotes myeloma cell tiple myeloma who were enrolled to the study. The study was survival and proliferation through the interaction between conducted in accordance with the Declaration of Helsinki. the MSCs and multiple myeloma cells. The bone marrow Informed written consent was obtained from each subject or each microenvironment promotes the interactions between the subject's guardian. The human investigations were performed MSCs and multiple myeloma cells that permit multiple mye- after approval by an institutional review board and in accordance loma to survive and proliferate. Here we discovered that with an assurance filed with. The detailed clinical features of these exosome-mediated transfer of PSMA3 (encodes proteasome patients are listed in Supplementary Table S1. Progression-free subunit a7) and lncPSMA3-AS1 from MSCs to multiple mye- survival (PFS) was defined as the time between initiation of loma cells contributed to PI resistance. PSMA3-AS1, which bortezomib therapy and the date of first evidence of progressive. arises from the antisense strand of PSMA3, was highly Patients who were progression-free at the time of analysis were expressed in myeloma cells (r-MM) and MSCs (r-MSCs) censored using the time between initial treatment and last follow- derived from bortezomib-resistant patients. As a pair of pro- up. More details of the patient samples are available in Supple- tein-coding/noncoding antisense transcripts, PSMA3 and mentary Data. PSMA3-AS1 were disordered concurrently and correlated pos- itively in multiple myeloma cells, driving PI sensitivity in multiple myeloma. These results provided in vitro and in vivo Plasmid construction evidence that interference with exosomal RNAs served as a Full-length cDNA (PMSA3 or PSMA3-AS1) was synthesized Eco Bam promising approach to overcome PI resistance in multiple and subcloned into the RI and HI sites of Lenti-CMV-puro fi myeloma. Moreover, our data indicated that circulating exo- vector. The constructs were veri ed by DNA sequencing. somal PSMA3 and PSMA3-AS1 could develop the prognostic fi stratification of patients with multiple myeloma, in addition Exosome puri cation to the international staging system. Exosomes secreted by cultured cell lines and MSCs were iso- lated using ExoQuick solution (System Biosciences). Exosomes in the plasma were isolated using ExoQuick-LP solution (System Biosciences). The detailed procedures of exosome isolation are Exosomes act as key communicators between tumor microen- available in the Supplementary Data. The exosome pellet was vironment and cancer cells (14, 15). The interaction between isolated and the protein content of the exosome suspension was MSCs and multiple myeloma cells plays a crucial role in multiple analyzed by BCA Protein Assay Kit (Beyotime Biotechnology). myeloma pathogenesis and drug resistance by exosomes (16, 17). Recently, lncRNAs have been reported to exist in exosomes Dynamic light scattering analysis (18, 19). LncRNAs are transcribed from thousands of loci in Dynamic light scattering (DLS) analysis was performed to mammalian genomes and function in a wide range of biological characterize and quantify the particle size distribution of exo- processes (20, 21). In cancers, lncRNAs are emerging important somes (Zetasizer Nano S90). regulators in oncogenic pathways (22, 23). However, the role of lncRNAs in the multiple myeloma pathogenesis and progression In vivo xenograft studies has not been fully elucidated. In particular, how exosomal The animal experiments were performed after acquired per- lncRNAs derived from the bone marrow microenvironment
Recommended publications
  • PSMB5 Antibody Cat
    PSMB5 Antibody Cat. No.: 57-791 PSMB5 Antibody Western blot analysis of PSMB5 using rabbit polyclonal PSMB5 Antibody immunohistochemistry analysis in PSMB5 Antibody using 293 cell lysates (2 ug/lane) either formalin fixed and paraffin embedded human skin tissue nontransfected (Lane 1) or transiently transfected (Lane 2) followed by peroxidase conjugation of the secondary with the PSMB5 gene. antibody and DAB staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This PSMB5 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 235-263 amino acids from the C-terminal region of human PSMB5. TESTED APPLICATIONS: IHC-P, WB For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 October 1, 2021 1 https://www.prosci-inc.com/psmb5-antibody-57-791.html PREDICTED MOLECULAR 28 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: PSMB5 Proteasome subunit beta type-5, Macropain epsilon chain, Multicatalytic endopeptidase ALTERNATE NAMES: complex epsilon chain, Proteasome chain 6, Proteasome epsilon chain, Proteasome subunit MB1, Proteasome subunit X, PSMB5, LMPX, MB1, X ACCESSION NO.: P28074 PROTEIN GI NO.: 187608890 GENE ID: 5693 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • Genetic Variations in the PSMA6 and PSMC6 Proteasome Genes Are Associated with Multiple Sclerosis and Response to Interferon‑Β Therapy in Latvians
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 478, 2021 Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians NATALIA PARAMONOVA1, JOLANTA KALNINA1, KRISTINE DOKANE1, KRISTINE DISLERE1, ILVA TRAPINA1, TATJANA SJAKSTE1 and NIKOLAJS SJAKSTE1,2 1Genomics and Bioinformatics, Institute of Biology of The University of Latvia; 2Department of Medical Biochemistry of The University of Latvia, LV‑1004 Riga, Latvia Received July 8, 2020; Accepted December 8, 2020 DOI: 10.3892/etm.2021.9909 Abstract. Several polymorphisms in genes related to the Introduction ubiquitin‑proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune Multiple sclerosis (MS) is a lifelong demyelinating disease of diseases. Our previous study reported the association the central nervous system. The clinical onset of MS tends to between multiple sclerosis (MS) and the PSMA3‑rs2348071 be between the second and fourth decade of life. Similarly to polymorphism in the Latvian population. The current study other autoimmune diseases, women are affected 3‑4 times more aimed to evaluate the PSMA6 and PSMC6 genetic variations, frequently than men (1). About 10% of MS patients experience their interaction between each other and with the rs2348071, a primary progressive MS form characterized by the progres‑ on the susceptibility to MS risk and response to therapy in sion of neurological disability from the onset. In about 90% the Latvian population. PSMA6‑rs2277460, ‑rs1048990 and of MS patients, the disease undergoes the relapse‑remitting PSMC6‑rs2295826, ‑rs2295827 were genotyped in the MS MS course (RRMS); in most of these patients, the condition case/control study and analysed in terms of genotype‑protein acquires secondary progressive course (SPMS) (2).
    [Show full text]
  • 20S Proteasome Α3 (Phospho Ser250) Polyclonal Antibody Catalog # AP67328
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody Catalog # AP67328 Specification 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody - Product Information Application WB Primary Accession P25788 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody - Additional Information Gene ID 5684 Other Names PSMA3; HC8; PSC8; Proteasome subunit alpha type-3; Macropain subunit C8; Multicatalytic endopeptidase complex subunit C8; Proteasome component C8 Dilution WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/10000. Not yet tested in other applications. Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Storage Conditions -20℃ 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody - Protein Information Name PSMA3 Synonyms HC8, PSC8 Function Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP- dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin- independent protein degradation. This type of proteolysis is required in several 20S Proteasome α3 (phospho Ser250) pathways including spermatogenesis Polyclonal Antibody - Background (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic Component of the 20S core proteasome peptides (20S-PA28 complex).
    [Show full text]
  • Inhibition of the Nrf2 Transcription Factor by the Alkaloid
    Oncogene (2013) 32, 4825–4835 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity A Arlt1,4, S Sebens2,4, S Krebs1, C Geismann1, M Grossmann1, M-L Kruse1, S Schreiber1,3 and H Scha¨fer1 Evidence accumulates that the transcription factor nuclear factor E2-related factor 2 (Nrf2) has an essential role in cancer development and chemoresistance, thus pointing to its potential as an anticancer target and undermining its suitability in chemoprevention. Through the induction of cytoprotective and proteasomal genes, Nrf2 confers apoptosis protection in tumor cells, and inhibiting Nrf2 would therefore be an efficient strategy in anticancer therapy. In the present study, pancreatic carcinoma cell lines (Panc1, Colo357 and MiaPaca2) and H6c7 pancreatic duct cells were analyzed for the Nrf2-inhibitory effect of the coffee alkaloid trigonelline (trig), as well as for its impact on Nrf2-dependent proteasome activity and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and anticancer drug-induced apoptosis. Chemoresistant Panc1 and Colo357 cells exhibit high constitutive Nrf2 activity, whereas chemosensitive MiaPaca2 and H6c7 cells display little basal but strong tert-butylhydroquinone (tBHQ)-inducible Nrf2 activity and drug resistance. Trig efficiently decreased basal and tBHQ-induced Nrf2 activity in all cell lines, an effect relying on a reduced nuclear accumulation of the Nrf2 protein. Along with Nrf2 inhibition, trig blocked the Nrf2-dependent expression of proteasomal genes (for example, s5a/psmd4 and a5/psma5) and reduced proteasome activity in all cell lines tested.
    [Show full text]
  • Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
    Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds.
    [Show full text]
  • Distinct Molecular Phenotype of Malignant Cd34þ Hematopoietic
    Oncogene (2005) 24, 5313–5324 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Distinct molecular phenotype of malignant CD34 þ hematopoietic stem and progenitor cells in chronic myelogenous leukemia Ralf Kronenwett*,1, Ulf Butterweck1, Ulrich Steidl1,2, Slawomir Kliszewski1, Frank Neumann1, Simone Bork1, Elena Diaz Blanco1, Nicole Roes1, Thorsten Gra¨ f1, Benedikt Brors3, Roland Eils3, Christian Maercker4, Guido Kobbe1, Norbert Gattermann1 and Rainer Haas1 1Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; 2Harvard Institutes of Medicine, Hematology/Oncology Division, Boston, MA, USA; 3Theoretical Bioinformatics, German Cancer Research Center, 69120 Heidelberg, Germany; 4German Resource Center for Genome Research, 69120 Heidelberg, Germany Chronic myelogenous leukemia (CML) is a malignant Keywords: CML; CD34 þ cells; gene expression; G disorder of the hematopoietic stem cell characterized by protein-coupled receptors the BCR–ABL oncogene. We examined gene expression profiles of highly enriched CD34 þ hematopoietic stem and progenitor cells from patients with CML in chronic phase using cDNA arrays covering 1.185 genes. Compar- ing CML CD34 cells with normal CD34 cells, we þ þ Introduction found 158 genes which were significantly differentially expressed. Gene expression patterns reflected BCR–ABL- Hematopoietic stem cells are characterized by the induced functional alterations such as increased cell-cycle capability of self-renewal and differentiation into the and proteasome activity. Detoxification enzymes and entire spectrum of blood cells. Knowledge gained from DNA repair proteins were downregulated in CML stem cell biology can also give novel insights into cancer CD34 cells, which might contribute to genetic instabil- þ research.
    [Show full text]
  • Identification of Potential Biomarkers and Analysis of Prognostic Values in Head and Neck Squamous Cell Carcinoma by Bioinformatics Analysis
    Journal name: OncoTargets and Therapy Article Designation: Original Research Year: 2017 Volume: 10 OncoTargets and Therapy Dovepress Running head verso: Yang et al Running head recto: Identification of potential biomarkers and analysis of prognostic values open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OTT.S135514 Open Access Full Text Article ORIGINAL RESEARCH Identification of potential biomarkers and analysis of prognostic values in head and neck squamous cell carcinoma by bioinformatics analysis Bo Yang* Abstract: The purpose of this study was to find disease-associated genes and potential Zhifeng Chen* mechanisms in head and neck squamous cell carcinoma (HNSCC) with deoxyribonucleic Yu Huang acid microarrays. The gene expression profiles of GSE6791 were downloaded from the Gene Guoxu Han Expression Omnibus database. Differentially expressed genes (DEGs) were obtained with Weizhong Li packages in R language and STRING constructed protein–protein interaction (PPI) network of the DEGs with combined score 0.8. Subsequently, module analysis of the PPI network was Department of Oral and Maxillofacial performed by Molecular Complex Detection plugin and functions and pathways of the hub Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, gene in subnetwork were studied. Finally, overall survival analysis of hub genes was verified People’s Republic of China in TCGA HNSCC cohort. A total of 811 DEGs were obtained, which were mainly enriched in *These authors contributed equally the terms related to extracellular matrix (ECM)–receptor interaction, ECM structural constitu- to this work ent, and ECM organization. A PPI network was constructed, consisting of 401 nodes and 1,254 edges and 15 hub genes with high degrees in the network.
    [Show full text]
  • Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes
    International Journal of Environmental Research and Public Health Article Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes Yueh-Han Hsu 1,2, Peng-Hui Wang 1,2,3,4,5 and Chia-Ming Chang 1,2,* 1 Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; [email protected] (Y.-H.H.); [email protected] (P.-H.W.) 2 School of Medicine, National Yang-Ming University, Taipei 112, Taiwan 3 Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan 4 Department of Medical Research, China Medical University Hospital, Taichung 440, Taiwan 5 Female Cancer Foundation, Taipei 104, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2875-7826; Fax: +886-2-5570-2788 Received: 27 April 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Clear cell carcinoma of the ovary (ovarian clear cell carcinoma (OCCC)) is one epithelial ovarian carcinoma that is known to have a poor prognosis and a tendency for being refractory to treatment due to unclear pathogenesis. Published investigations of OCCC have mainly focused only on individual genes and lack of systematic integrated research to analyze the pathogenesis of OCCC in a genome-wide perspective. Thus, we conducted an integrated analysis using transcriptome datasets from a public domain database to determine genes that may be implicated in the pathogenesis involved in OCCC carcinogenesis. We used the data obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) DataSets. We found six interactive functional gene clusters in the pathogenesis network of OCCC, including ribosomal protein, eukaryotic translation initiation factors, lactate, prostaglandin, proteasome, and insulin-like growth factor.
    [Show full text]
  • UVB-Mediated Down-Regulation of Proteasome in Cultured Human Primary Pterygium Fibroblasts Alexios J
    Aletras et al. BMC Ophthalmology (2018) 18:328 https://doi.org/10.1186/s12886-018-0987-8 RESEARCH ARTICLE Open Access UVB-mediated down-regulation of proteasome in cultured human primary pterygium fibroblasts Alexios J. Aletras1* , Ioannis Trilivas2, Maria-Elpida Christopoulou1, Sotiria Drakouli1,3, Constantine D. Georgakopoulos2 and Nikolaos Pharmakakis2 Abstract Background: Pterygium is a condition characterized by epithelial overgrowth of the cornea, inflammatory cell infiltration and an abnormal extracellular matrix accumulation. Chronic UV exposure is considered as a pathogenic factor of this disease. Proteasome is an intracellular multi-subunit protease complex that degrades intracellular proteins. Among proteasome subunits the β5 (PSMB5), bearing chymotrypsin-like activity. It is considered as the main proteasome subunit and its expression is mediated by Nrf2-ARE pathway in many cell types. This study investigates the expression of PSMB5 in pterygium and the effect of UVB irradiation on its expression and activity in pterygium fibroblasts. Methods: Normal conjunctival and pterygium specimens were obtained from the bulbar conjunctiva of patients undergoing cataract surgery and from patients with pterygium undergoing surgical removal of primary tissue, respectively. Fibroblasts were isolated upon treatment of specimens with clostridium collagenase. The expression of PSMB5 and Nrf2 in tissues and cells was ascertained by RT-PCR analysis and western blotting. Cell survival was measured by the MTT method and the proteasome chymotrypsin-like activity was determined by fluorometry. Results: RT-PCR analysis showed that the expression of PSMB5 was significantly lower in pterygium than in normal conjunctiva. The expression of PSMB5 was mediated by the Nrf2/ARE pathway as indicated by using the Nrf2 activator Oltipraz.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • Drives Nuclear FOXO Proteolysis
    OPEN Oncogene (2018) 37, 363–376 www.nature.com/onc ORIGINAL ARTICLE Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis F Zhang1, DM Virshup1,2,3 and JK Cheong1 Evasion of forkhead box O (FOXO) family of longevity-related transcription factors-mediated growth suppression is necessary to promote cancer development. Since somatic alterations or mutations and transcriptional dysregulation of the FOXO genes are infrequent in human cancers, it remains unclear how these tumour suppressors are eliminated from cancer cells. The protein stability of FOXO3A is regulated by Casein Kinase 1 alpha (CK1α) in an oncogenic RAS-specific manner, but whether this mode of regulation extends to related FOXO family members is unknown. Here we report that CK1α similarly destabilizes FOXO4 in RAS- mutant cells by phosphorylation at serines 265/268. The CK1α-dependent phosphoregulation of FOXO4 is primed, in part, by the PI3K/AKT effector axis of oncogenic RAS signalling. In addition, mutant RAS coordinately elevates proteasome subunit expression and proteolytic activity to eradicate nuclear FOXO4 proteins from RAS-mutant cancer cells. Importantly, dual inhibition of CK1α and the proteasome synergistically inhibited the growth of multiple RAS-mutant human cancer cell lines of diverse tissue origin by blockade of nuclear FOXO4 degradation and induction of caspase-dependent apoptosis. Our findings challenge the current paradigm that nuclear export regulates the proteolysis of FOXO3A/4 tumour suppressors in the context of cancer and illustrates how oncogenic
    [Show full text]
  • PSMB6 Polyclonal Antibody Catalog Number:11684-2-AP 1 Publications
    For Research Use Only PSMB6 Polyclonal antibody Catalog Number:11684-2-AP 1 Publications www.ptglab.com Catalog Number: GenBank Accession Number: Purification Method: Basic Information 11684-2-AP BC000835 Antigen affinity purification Size: GeneID (NCBI): Recommended Dilutions: 150UL , Concentration: 450 μg/ml by 5694 WB 1:500-1:2000 Nanodrop and 227 μg/ml by Bradford Full Name: IHC 1:50-1:500 method using BSA as the standard; proteasome (prosome, macropain) IF 1:50-1:500 Source: subunit, beta type, 6 Rabbit Calculated MW: Isotype: 239 aa, 25 kDa IgG Observed MW: Immunogen Catalog Number: 25 kDa AG2296 Applications Tested Applications: Positive Controls: IF, IHC, WB,ELISA WB : HeLa cells, Caco-2 cells, fetal human brain tissue, Cited Applications: human liver tissue, mouse brain tissue, rat brain tissue WB IHC : human colon cancer tissue, human gliomas tissue Species Specificity: IF : HeLa cells, human, mouse, rat Cited Species: rat Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0 PSMB6(Proteasome subunit beta type-6) is also named as LMPY, Y and belongs to the peptidase T1B family.The Background Information proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH.It may also catalyzes basal processing of intracellular antigens.It can be up-regulated in anaplastic thyroid cancer cell lines and down- regulated by IFNG/IFN-gamma (at protein level)(PMID:8066462;15613457).
    [Show full text]