R Graphics Output
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Variations in the PSMA6 and PSMC6 Proteasome Genes Are Associated with Multiple Sclerosis and Response to Interferon‑Β Therapy in Latvians
EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 478, 2021 Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians NATALIA PARAMONOVA1, JOLANTA KALNINA1, KRISTINE DOKANE1, KRISTINE DISLERE1, ILVA TRAPINA1, TATJANA SJAKSTE1 and NIKOLAJS SJAKSTE1,2 1Genomics and Bioinformatics, Institute of Biology of The University of Latvia; 2Department of Medical Biochemistry of The University of Latvia, LV‑1004 Riga, Latvia Received July 8, 2020; Accepted December 8, 2020 DOI: 10.3892/etm.2021.9909 Abstract. Several polymorphisms in genes related to the Introduction ubiquitin‑proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune Multiple sclerosis (MS) is a lifelong demyelinating disease of diseases. Our previous study reported the association the central nervous system. The clinical onset of MS tends to between multiple sclerosis (MS) and the PSMA3‑rs2348071 be between the second and fourth decade of life. Similarly to polymorphism in the Latvian population. The current study other autoimmune diseases, women are affected 3‑4 times more aimed to evaluate the PSMA6 and PSMC6 genetic variations, frequently than men (1). About 10% of MS patients experience their interaction between each other and with the rs2348071, a primary progressive MS form characterized by the progres‑ on the susceptibility to MS risk and response to therapy in sion of neurological disability from the onset. In about 90% the Latvian population. PSMA6‑rs2277460, ‑rs1048990 and of MS patients, the disease undergoes the relapse‑remitting PSMC6‑rs2295826, ‑rs2295827 were genotyped in the MS MS course (RRMS); in most of these patients, the condition case/control study and analysed in terms of genotype‑protein acquires secondary progressive course (SPMS) (2). -
View of HER2: Human Epidermal Growth Factor Receptor 2; TNBC: Triple-Negative Breast Resistance to Systemic Therapy in Patients with Breast Cancer
Wen et al. Cancer Cell Int (2018) 18:128 https://doi.org/10.1186/s12935-018-0625-9 Cancer Cell International PRIMARY RESEARCH Open Access Sulbactam‑enhanced cytotoxicity of doxorubicin in breast cancer cells Shao‑hsuan Wen1†, Shey‑chiang Su2†, Bo‑huang Liou3, Cheng‑hao Lin1 and Kuan‑rong Lee1* Abstract Background: Multidrug resistance (MDR) is a major obstacle in breast cancer treatment. The predominant mecha‑ nism underlying MDR is an increase in the activity of adenosine triphosphate (ATP)-dependent drug efux trans‑ porters. Sulbactam, a β-lactamase inhibitor, is generally combined with β-lactam antibiotics for treating bacterial infections. However, sulbactam alone can be used to treat Acinetobacter baumannii infections because it inhibits the expression of ATP-binding cassette (ABC) transporter proteins. This is the frst study to report the efects of sulbactam on mammalian cells. Methods: We used the breast cancer cell lines as a model system to determine whether sulbactam afects cancer cells. The cell viabilities in the present of doxorubicin with or without sulbactam were measured by MTT assay. Protein identities and the changes in protein expression levels in the cells after sulbactam and doxorubicin treatment were determined using LC–MS/MS. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was used to analyze the change in mRNA expression levels of ABC transporters after treatment of doxorubicin with or without sulbactam. The efux of doxorubicin was measures by the doxorubicin efux assay. Results: MTT assay revealed that sulbactam enhanced the cytotoxicity of doxorubicin in breast cancer cells. The results of proteomics showed that ABC transporter proteins and proteins associated with the process of transcription and initiation of translation were reduced. -
20S Proteasome Α3 (Phospho Ser250) Polyclonal Antibody Catalog # AP67328
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody Catalog # AP67328 Specification 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody - Product Information Application WB Primary Accession P25788 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody - Additional Information Gene ID 5684 Other Names PSMA3; HC8; PSC8; Proteasome subunit alpha type-3; Macropain subunit C8; Multicatalytic endopeptidase complex subunit C8; Proteasome component C8 Dilution WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/10000. Not yet tested in other applications. Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Storage Conditions -20℃ 20S Proteasome α3 (phospho Ser250) Polyclonal Antibody - Protein Information Name PSMA3 Synonyms HC8, PSC8 Function Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP- dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin- independent protein degradation. This type of proteolysis is required in several 20S Proteasome α3 (phospho Ser250) pathways including spermatogenesis Polyclonal Antibody - Background (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic Component of the 20S core proteasome peptides (20S-PA28 complex). -
Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors. -
Overexpression of Androgen Receptor in Prostate Cancer
ALFONSO URBANUCCI Overexpression of Androgen Receptor in Prostate Cancer ACADEMIC DISSERTATION To be presented, with the permission of the board of Institute of Biomedical Technology of the University of Tampere, for public discussion in the Jarmo Visakorpi Auditorium, of the Arvo Building, Lääkärinkatu 1, Tampere, on January 20th, 2012, at 12 o’clock. UNIVERSITY OF TAMPERE ACADEMIC DISSERTATION University of Tampere, Institute of Biomedical Technology and BioMediTech Tampere University Hospital, Laboratory Centre Graduate Program in Biomedicine and Biotechnology (TGPBB) Finland Supervised by Reviewed by Professor Tapio Visakorpi Docent Auli Karhu University of Tampere University of Helsinki Finland Finland Docent Noora Kotaja University of Turku Finland Copyright ©2012 Tampere University Press and the author Distribution Tel. +358 40 190 9800 Bookshop TAJU Fax +358 3 3551 7685 P.O. Box 617 [email protected] 33014 University of Tampere www.uta.fi/taju Finland http://granum.uta.fi Cover design by Mikko Reinikka Acta Universitatis Tamperensis 1693 Acta Electronica Universitatis Tamperensis 1159 ISBN 978-951-44-8685-2 (print) ISBN 978-951-44-8686-9 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://acta.uta.fi Tampereen Yliopistopaino Oy – Juvenes Print Tampere 2012 CONTENTS ABBREVIATIONS ..................................................................................................... 5 ABSTRACT ................................................................................................................ 7 SINTESI ..................................................................................................................... -
SUPPLEMENTARY TABLES and FIGURE LEGENDS Supplementary
SUPPLEMENTARY TABLES AND FIGURE LEGENDS Supplementary Figure 1. Quantitation of MYC levels in vivo and in vitro. a) MYC levels in cell lines 6814, 6816, 5720, 966, and 6780 (corresponding to first half of Figure 1a in main text). MYC is normalized to tubulin. b) MYC quantitations (normalized to tubulin) for cell lines Daudi, Raji, Jujoye, KRA, KRB, GM, and 6780 corresponding to second half of Figure 1a. c) In vivo MYC quantitations, for mice treated with 0-0.5 ug/ml doxycycline in their drinking water. MYC is normalized to tubulin. d) Quantitation of changing MYC levels during in vitro titration, normalized to tubulin. e) Levels of Odc (normalized to tubulin) follow MYC levels in titration series. Supplementary Figure 2. Evaluation of doxycycline concentration in the plasma of mice treated with doxycycline in their drinking water. Luciferase expressing CHO cells (Tet- off) (Clonethech Inc) that is responsive to doxycycline by turning off luciferase expression was treated with different concentrations of doxycycline in culture. A standard curve (blue line) correlating luciferase activity (y-axis) with treatment of doxycycline (x- axis) was generated for the CHO cell in culture. Plasma from mice treated with different concentrations of doxycycline in their drinking water was separated and added to the media of the CHO cells. Luciferase activity was measured and plotted on the standard curve (see legend box). The actual concentration of doxycycline in the plasma was extrapolated for the luciferase activity measured. The doxycycline concentration 0.2 ng/ml measured in the plasma of mice correlates with 0.05 μg/ml doxycycline treatment in the drinking water of mice, the in vivo threshold for tumor regression. -
(DHFR) As a Modulator of B- Catenin/GSK3 Signaling
A Lentivirus-Mediated Genetic Screen Identifies Dihydrofolate Reductase (DHFR) as a Modulator of b- Catenin/GSK3 Signaling Richard A. Klinghoffer1*, Jason Frazier1, James Annis1, Jason D. Berndt2, Brian S. Roberts1, William T. Arthur1, Raul Lacson3, Xiaohua Douglas Zhang4, Marc Ferrer3, Randall T. Moon2, Michele A. Cleary1 1 Rosetta Inpharmatics, LLC, Seattle, Washington, United States of America, 2 Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, and Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, United States of America, 3 Department of Automated Biotechnology, Merck Research Laboratories, Merck & Co., Inc., North Wales, Pennsylvania, United States of America, 4 Department of Biometrics Research, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America Abstract The multi-protein b-catenin destruction complex tightly regulates b-catenin protein levels by shuttling b-catenin to the proteasome. Glycogen synthase kinase 3b (GSK3b), a key serine/threonine kinase in the destruction complex, is responsible for several phosphorylation events that mark b-catenin for ubiquitination and subsequent degradation. Because modulation of both b-catenin and GSK3b activity may have important implications for treating disease, a complete understanding of the mechanisms that regulate the b-catenin/GSK3b interaction is warranted. We screened an arrayed lentivirus library expressing small hairpin RNAs (shRNAs) targeting 5,201 human druggable genes for silencing events that activate a b- catenin pathway reporter (BAR) in synergy with 6-bromoindirubin-39oxime (BIO), a specific inhibitor of GSK3b. Top screen hits included shRNAs targeting dihydrofolate reductase (DHFR), the target of the anti-inflammatory compound methotrexate. Exposure of cells to BIO plus methotrexate resulted in potent synergistic activation of BAR activity, reduction of b-catenin phosphorylation at GSK3-specific sites, and accumulation of nuclear b-catenin. -
Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds. -
Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments. -
Distinct Molecular Phenotype of Malignant Cd34þ Hematopoietic
Oncogene (2005) 24, 5313–5324 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Distinct molecular phenotype of malignant CD34 þ hematopoietic stem and progenitor cells in chronic myelogenous leukemia Ralf Kronenwett*,1, Ulf Butterweck1, Ulrich Steidl1,2, Slawomir Kliszewski1, Frank Neumann1, Simone Bork1, Elena Diaz Blanco1, Nicole Roes1, Thorsten Gra¨ f1, Benedikt Brors3, Roland Eils3, Christian Maercker4, Guido Kobbe1, Norbert Gattermann1 and Rainer Haas1 1Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; 2Harvard Institutes of Medicine, Hematology/Oncology Division, Boston, MA, USA; 3Theoretical Bioinformatics, German Cancer Research Center, 69120 Heidelberg, Germany; 4German Resource Center for Genome Research, 69120 Heidelberg, Germany Chronic myelogenous leukemia (CML) is a malignant Keywords: CML; CD34 þ cells; gene expression; G disorder of the hematopoietic stem cell characterized by protein-coupled receptors the BCR–ABL oncogene. We examined gene expression profiles of highly enriched CD34 þ hematopoietic stem and progenitor cells from patients with CML in chronic phase using cDNA arrays covering 1.185 genes. Compar- ing CML CD34 cells with normal CD34 cells, we þ þ Introduction found 158 genes which were significantly differentially expressed. Gene expression patterns reflected BCR–ABL- Hematopoietic stem cells are characterized by the induced functional alterations such as increased cell-cycle capability of self-renewal and differentiation into the and proteasome activity. Detoxification enzymes and entire spectrum of blood cells. Knowledge gained from DNA repair proteins were downregulated in CML stem cell biology can also give novel insights into cancer CD34 cells, which might contribute to genetic instabil- þ research. -
Produktinformation
Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic PSMD10 Antibody, Biotin conjugated Product Code CSB-PA018899LD01HU Abbreviation 26S proteasome non-ATPase regulatory subunit 10 Storage Upon receipt, store at -20°C or -80°C. Avoid repeated freeze. Uniprot No. O75832 Immunogen Recombinant Human 26S proteasome non-ATPase regulatory subunit 10 protein (1-226AA) Raised In Rabbit Species Reactivity Human Tested Applications ELISA Relevance Acts as a chaperone during the assembly of the 26S proteasome, specifically of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD10:PSMC4:PSMC5:PAAF1 module which probably assembles with a PSMD5:PSMC2:PSMC1:PSMD2 module. Independently of the proteasome, regulates EGF-induced AKT activation through inhibition of the RHOA/ROCK/PTEN pahway, leading to prolonged AKT activation. Plays an important role in RAS-induced tumorigenesis. Acts as an proto-oncoprotein by being involved in negative regulation of tumor suppressors RB1 and p53/TP53. Overexpression is leading to phosphorylation of RB1 and proteasomal degradation of RB1. Regulates CDK4-mediated phosphorylation of RB1 by competing with CDKN2A for binding with CDK4. Facilitates binding of MDM2 to p53/TP53 and the mono- and polyubiquitination of p53/TP53 by MDM2 suggesting a function in targeting the TP53:MDM2 complex to the 26S proteasome. -
Datasheet: VMA00472KT Product Details
Datasheet: VMA00472KT Description: PSMA6 ANTIBODY WITH CONTROL LYSATE Specificity: PSMA6 Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: 7C2 Isotype: IgG1 Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Mouse monoclonal antibody purified by affinity chromatography on Protein G from ascites Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Full length recombinant protein of human PSMA6 produced in E. Coli External Database Links UniProt: P60900 Related reagents Entrez Gene: 5687 PSMA6 Related reagents Page 1 of 3 Synonyms PROS27 Specificity Mouse anti Human PSMA6 antibody recognizes the PSMA6, also known as 27 kDa prosomal protein, PROS-27, macropain iota chain, multicatalytic endopeptidase complex iota chain, prosomal P27K protein, proteasome iota chain, proteasome subunit alpha type-6 or proteasome subunit iota.