UVB-Mediated Down-Regulation of Proteasome in Cultured Human Primary Pterygium Fibroblasts Alexios J

Total Page:16

File Type:pdf, Size:1020Kb

UVB-Mediated Down-Regulation of Proteasome in Cultured Human Primary Pterygium Fibroblasts Alexios J Aletras et al. BMC Ophthalmology (2018) 18:328 https://doi.org/10.1186/s12886-018-0987-8 RESEARCH ARTICLE Open Access UVB-mediated down-regulation of proteasome in cultured human primary pterygium fibroblasts Alexios J. Aletras1* , Ioannis Trilivas2, Maria-Elpida Christopoulou1, Sotiria Drakouli1,3, Constantine D. Georgakopoulos2 and Nikolaos Pharmakakis2 Abstract Background: Pterygium is a condition characterized by epithelial overgrowth of the cornea, inflammatory cell infiltration and an abnormal extracellular matrix accumulation. Chronic UV exposure is considered as a pathogenic factor of this disease. Proteasome is an intracellular multi-subunit protease complex that degrades intracellular proteins. Among proteasome subunits the β5 (PSMB5), bearing chymotrypsin-like activity. It is considered as the main proteasome subunit and its expression is mediated by Nrf2-ARE pathway in many cell types. This study investigates the expression of PSMB5 in pterygium and the effect of UVB irradiation on its expression and activity in pterygium fibroblasts. Methods: Normal conjunctival and pterygium specimens were obtained from the bulbar conjunctiva of patients undergoing cataract surgery and from patients with pterygium undergoing surgical removal of primary tissue, respectively. Fibroblasts were isolated upon treatment of specimens with clostridium collagenase. The expression of PSMB5 and Nrf2 in tissues and cells was ascertained by RT-PCR analysis and western blotting. Cell survival was measured by the MTT method and the proteasome chymotrypsin-like activity was determined by fluorometry. Results: RT-PCR analysis showed that the expression of PSMB5 was significantly lower in pterygium than in normal conjunctiva. The expression of PSMB5 was mediated by the Nrf2/ARE pathway as indicated by using the Nrf2 activator Oltipraz. The expression of PSMB5 and Nrf2 by pterygium fibroblasts was suppressed in a dose dependent manner following UVB radiation of 0–50 mJ/cm2 doses. The expression of PSMB5, but not of Nrf2, remained at almost the control levels, when UVB exposure was performed after pre-incubation of cells with the src kinases inhibitor PP2. UVB irradiation had very low deleterious effect on fibroblasts survival, while it did not affect the proteasome chymotrypsin-like activity. Conclusion: In pterygium fibroblasts, UVB exposure leads to down-regulation of Nrf2/ARE-mediated PSMB5 gene expression, in which src kinases may be implicated. This effect may be partially responsible for the lower expression of PSMB5 detected in pterygium as compared to normal conjunctiva. Keywords: Pterygium, Fibroblasts, Proteasome, UVB irradiation, Nrf2-ARE pathway, Src kinases * Correspondence: [email protected] 1Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26 504 Patras, Greece Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Aletras et al. BMC Ophthalmology (2018) 18:328 Page 2 of 10 Background oxidized proteins that it exerts, highly contributes in the Pterygium is an eye disorder featuring hyperplasia of the cellular defenses against oxidative stress. In contrast, the cornea epithelium, usually bilateral, overgrowth of stromal impaired function of the proteasome, leads to accumula- fibroblasts and blood vessels, significant neovasculariza- tion of oxidized/misfolded proteins within the cell, and tion, inflammatory cell infiltration and abnormal extracel- may be responsible for the manifestation several degen- lular matrix accumulation, with elastin and collagen being erative diseases [22–26]. the main components. Histopathological studies revealed Previous studies have established that the expression of that the pterygium epithelium, which invades the cornea, the catalytic subunits of the proteasome can be induced exhibits alterations such as squamous metaplasia and gob- by various exogenous stimuli through the Nrf2-ARE let cell overgrowth. An underlying damage of Bowman’s (NF-E2 related factor 2-antioxidant response element) layer was also observed [1]. pathway and it has been proposed that the up-regulation Immuohistologic studies indicate that pterygium is ra- of the proteasome subunits by Nrf2 activators may con- ther a limbal epithelial stem cell disorder, the formation tribute to the protection of cells against oxidative damage and development of which may be triggered from a dam- through the selective degradation of oxidized proteins, age or activation of these stem cells [2]. The exact reasons thus preventing the formation of protein aggregates and of pterygium pathogenesis remain unclear, however ultra- their accumulation within cells [27–33]. violet (UV) radiation is considered to be the most accept- Nrf2 belongs to family of the basic leucine zipper able cause for the initiation of this disorder [3, 4]. NF-E2 (nuclear factor erythroid-derived 2). Under nor- UVB radiation induces damage to cellular DNA, RNA, mal conditions, it occurs as a complex with the protein and extracellular matrix components through activation KEAP1 (Kelch-like erythroid-cell-derived protein with of different pathways [5]. UVB radiation also stimulates CNC homology (ECH)-associated protein), remaining in the expression of cytokines and growth factors in pteryg- the cytoplasm, where it is subsequently degraded by the ium cells, which are considered to play pivotal role in ubiquitin/ proteasome pathway. Upon exposure to oxi- the establishment and development of pterygium. The dative stress, the Nrf2-KEAP1 complex dissociates and expression of cytokines and growth factors, such as IL-6, Nrf2 migrates to the nucleus where interacts with small IL-8, TNF-α, bFGF, TGF-β and PDGF, in pterygium has Maf-family proteins (small musculoaponeurotic fibrosar- been previously reported [6–10]. Extracellular matrix coma TFs required for Nrf2 transactivation) forming het- metalloproteinases (MMPs) may be also involved in the erodimers that bind to AREs in target gene promoters. pathogenesis of pterygium. The expression of MMPs, Various small electrophile molecules, including oltipraz such as MMP-2, MMP-3, MMP-9 and particularly (5-[2-pyrazinyl]-4-methyl-1,2-dithiol-3-thione), inacti- MMP-1, which is the most abundant, has been demon- vate KEAP1 and release the Nrf2, which then migrates strated in pterygium tissues [11–13]. In addition, high to the nucleus [34]. expression of hypoxia inducible factor-1α (HIF-1α) and The implication of proteasome in pterygium pathogen- heat shock proteins (Hsp), such as Hsp90, Hsp70 and esis as well as the effect of UVB irradiation on its ex- Hsp27 in pterygium tissues has been previously reported pression and activity in pterygium cells has not yet been [14, 15]. They may contribute in the cellular defense studied. In the present study we investigated the effect mechanisms against stressful conditions . of UVB irradiation on β5 proteasome subunit (PSMB5) The 26S proteasome is an intracellular proteolytic expression and activity in pterygium fibroblasts. complex of two components: a 20S proteolytic core, which contains the catalytic activity, and a 19S regula- tory subunit [16, 17]. The 20S proteolytic core is con- Methods structed from 28 subunits distributed in four heptameric Specimen selection rings stacked on top of each other, to form a structure Specimens of normal bulbar conjunctival tissues were resembling a barrel. The components of the two outside obtained from five patients (2 male and 3 female) under- rings are called the α-subunits, and those of the two in- going cataract surgery, who did not show symptoms of side rings β-subunits. The proteasome possesses mul- an ocular surface disorder or of dry eyes, whose ages tiple protease activities, such as caspase-like, trypsin-like ranged from 61 to 90 years old (mean age ± SD 75.40 ± and chymotrypsin-like activity, localized on subunits β1, 12.26). Pterygium tissues located nasally were obtained β2andβ5, respectively, and is able to degrade almost all from five patients (3 male and 2 female) subjected to the intracellular abnormal and denaturated proteins, as primary pterygium excision surgery, whose ages ranged well as functional proteins, which have to be recycled. It from 60 to 84 years old (mean age ± SD 71.80 ± 8.73). also plays a role in cell cycle progression, and in cell de- The study population was of Greek origin and all the velopment and death [18–21]. The normal function of specimens were collected in the Department of Ophthal- proteasome and the consequent selective degradation of mology, University Hospital of Patras, Patras, Greece. Aletras et al. BMC Ophthalmology (2018) 18:328 Page 3 of 10 Conjunctival and primary Pterygium fibroblast cultures mM DTT in water for 1 h at 4 °C [39]. Lysates were centri- Pterygium or normal conjunctival specimens immediately fuged at 14,000 g for 30 min at 4 °C and protein concentra- after excision were transferred on ice in the Laboratory tions were determined in supernatants by the
Recommended publications
  • PSMB5 Antibody Cat
    PSMB5 Antibody Cat. No.: 57-791 PSMB5 Antibody Western blot analysis of PSMB5 using rabbit polyclonal PSMB5 Antibody immunohistochemistry analysis in PSMB5 Antibody using 293 cell lysates (2 ug/lane) either formalin fixed and paraffin embedded human skin tissue nontransfected (Lane 1) or transiently transfected (Lane 2) followed by peroxidase conjugation of the secondary with the PSMB5 gene. antibody and DAB staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This PSMB5 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 235-263 amino acids from the C-terminal region of human PSMB5. TESTED APPLICATIONS: IHC-P, WB For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 October 1, 2021 1 https://www.prosci-inc.com/psmb5-antibody-57-791.html PREDICTED MOLECULAR 28 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: PSMB5 Proteasome subunit beta type-5, Macropain epsilon chain, Multicatalytic endopeptidase ALTERNATE NAMES: complex epsilon chain, Proteasome chain 6, Proteasome epsilon chain, Proteasome subunit MB1, Proteasome subunit X, PSMB5, LMPX, MB1, X ACCESSION NO.: P28074 PROTEIN GI NO.: 187608890 GENE ID: 5693 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
    Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds.
    [Show full text]
  • Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes
    International Journal of Environmental Research and Public Health Article Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes Yueh-Han Hsu 1,2, Peng-Hui Wang 1,2,3,4,5 and Chia-Ming Chang 1,2,* 1 Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; [email protected] (Y.-H.H.); [email protected] (P.-H.W.) 2 School of Medicine, National Yang-Ming University, Taipei 112, Taiwan 3 Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan 4 Department of Medical Research, China Medical University Hospital, Taichung 440, Taiwan 5 Female Cancer Foundation, Taipei 104, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2875-7826; Fax: +886-2-5570-2788 Received: 27 April 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Clear cell carcinoma of the ovary (ovarian clear cell carcinoma (OCCC)) is one epithelial ovarian carcinoma that is known to have a poor prognosis and a tendency for being refractory to treatment due to unclear pathogenesis. Published investigations of OCCC have mainly focused only on individual genes and lack of systematic integrated research to analyze the pathogenesis of OCCC in a genome-wide perspective. Thus, we conducted an integrated analysis using transcriptome datasets from a public domain database to determine genes that may be implicated in the pathogenesis involved in OCCC carcinogenesis. We used the data obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) DataSets. We found six interactive functional gene clusters in the pathogenesis network of OCCC, including ribosomal protein, eukaryotic translation initiation factors, lactate, prostaglandin, proteasome, and insulin-like growth factor.
    [Show full text]
  • Drives Nuclear FOXO Proteolysis
    OPEN Oncogene (2018) 37, 363–376 www.nature.com/onc ORIGINAL ARTICLE Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis F Zhang1, DM Virshup1,2,3 and JK Cheong1 Evasion of forkhead box O (FOXO) family of longevity-related transcription factors-mediated growth suppression is necessary to promote cancer development. Since somatic alterations or mutations and transcriptional dysregulation of the FOXO genes are infrequent in human cancers, it remains unclear how these tumour suppressors are eliminated from cancer cells. The protein stability of FOXO3A is regulated by Casein Kinase 1 alpha (CK1α) in an oncogenic RAS-specific manner, but whether this mode of regulation extends to related FOXO family members is unknown. Here we report that CK1α similarly destabilizes FOXO4 in RAS- mutant cells by phosphorylation at serines 265/268. The CK1α-dependent phosphoregulation of FOXO4 is primed, in part, by the PI3K/AKT effector axis of oncogenic RAS signalling. In addition, mutant RAS coordinately elevates proteasome subunit expression and proteolytic activity to eradicate nuclear FOXO4 proteins from RAS-mutant cancer cells. Importantly, dual inhibition of CK1α and the proteasome synergistically inhibited the growth of multiple RAS-mutant human cancer cell lines of diverse tissue origin by blockade of nuclear FOXO4 degradation and induction of caspase-dependent apoptosis. Our findings challenge the current paradigm that nuclear export regulates the proteolysis of FOXO3A/4 tumour suppressors in the context of cancer and illustrates how oncogenic
    [Show full text]
  • Deubiquitinase UCHL1 Maintains Protein Homeostasis Through the PSMA7-APEH- Proteasome Axis in High-Grade Serous Ovarian Carcinoma
    Author Manuscript Published OnlineFirst on March 22, 2021; DOI: 10.1158/1541-7786.MCR-20-0883 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Deubiquitinase UCHL1 Maintains Protein Homeostasis through the PSMA7-APEH- Proteasome Axis in High-Grade Serous Ovarian Carcinoma Apoorva Tangri1*, Kinzie Lighty1*, Jagadish Loganathan1, Fahmi Mesmar2, Ram Podicheti3, Chi Zhang4, Marcin Iwanicki5, Ronny Drapkin6, Harikrishna Nakshatri7,8, Sumegha Mitra1,8,# 1Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA 2Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA 3Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 4Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA 5Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA 6Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 7Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA 8Indiana University Simon Comprehensive Cancer Center, Indianapolis, USA *Equal contribution Running title: UCHL1 mediates protein homeostasis in HGSOC Conflict of interest disclosure statement: None #Corresponding author Sumegha Mitra, Ph.D. Assistant Professor of Obstetrics and Gynecology Indiana University School of Medicine C547 Joseph E. Walther Hall (R3) 980 W Walnut Street, Indianapolis, IN 46202 317-274-3967 (office) 317-944-7417 (fax) [email protected] 1 Downloaded from mcr.aacrjournals.org on October 1, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 22, 2021; DOI: 10.1158/1541-7786.MCR-20-0883 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma
    Published OnlineFirst January 4, 2019; DOI: 10.1158/1078-0432.CCR-18-2363 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma Hongxia Xu1,2, Huiying Han1, Sha Song1, Nengjun Yi3, Chen'ao Qian4, Yingchun Qiu1, Wenqi Zhou1, Yating Hong5, Wenyue Zhuang6, Zhengyi Li7, Bingzong Li5, and Wenzhuo Zhuang1 Abstract Purpose: How exosomal RNAs released within the bone Results: We identified that PSMA3 and PSMA3-AS1 in MSCs marrow microenvironment affect proteasome inhibitors' (PI) could be packaged into exosomes and transferred to myeloma sensitivity of multiple myeloma is currently unknown. This cells, thus promoting PI resistance. PSMA3-AS1 could form an study aims to evaluate which exosomal RNAs are involved and RNA duplex with pre-PSMA3, which transcriptionally promot- by which molecular mechanisms they exert this function. ed PSMA3 expression by increasing its stability. In xenograft Experimental Design: Exosomes were characterized by models, intravenously administered siPSMA3-AS1 was found dynamic light scattering, transmission electron microscopy, and to be effective in increasing carfilzomib sensitivity. Moreover, Western blot analysis. Coculture experiments were performed to plasma circulating exosomal PSMA3 and PSMA3-AS1 derived assess exosomal RNAs transferring from mesenchymal stem from patients with multiple myeloma were significantly asso- cells (MSC) to multiple myeloma cells. The role of PSMA3-AS1 ciated with PFS and OS. in PI sensitivity was further evaluated in vivo. To determine the Conclusions: This study suggested a unique role of exoso- prognostic significance of circulating exosomal PSMA3 and mal PSMA3 and PSMA3-AS1 in transmitting PI resistance from PSMA3-AS1, a cohort of patients with newly diagnosed multiple MSCs to multiple myeloma cells, through a novel exosomal myeloma was enrolled to study.
    [Show full text]
  • TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells
    cells Article TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells Haritha L. Desu 1, Placido Illiano 1, James S. Choi 1, Maureen C. Ascona 1, Han Gao 1,2, Jae K. Lee 1 and Roberta Brambilla 1,3,4,* 1 The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; [email protected] (H.L.D.); [email protected] (P.I.); [email protected] (J.S.C.); [email protected] (M.C.A.); [email protected] (H.G.); [email protected] (J.K.L.) 2 Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China 3 Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE—Brain Research Inter Disciplinary Guided Excellence, 5000 Odense, Denmark 4 Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark * Correspondence: [email protected]; Tel.: +305-243-3567 Abstract: Multiple sclerosis (MS) is a neuroimmune disorder characterized by inflammation, CNS demyelination, and progressive neurodegeneration. Chronic MS patients exhibit impaired remyeli- nation capacity, partly due to the changes that oligodendrocyte precursor cells (OPCs) undergo in response to the MS lesion environment. The cytokine tumor necrosis factor (TNF) is present in the MS-affected CNS and has been implicated in disease pathophysiology. Of the two active forms of TNF, transmembrane (tmTNF) and soluble (solTNF), tmTNF signals via TNFR2 mediating protective and reparative effects, including remyelination, whereas solTNF signals predominantly via TNFR1 Citation: Desu, H.L.; Illiano, P.; Choi, promoting neurotoxicity.
    [Show full text]
  • Expression of Immunoproteasome Genes Is Regulated by Cell-Intrinsic
    www.nature.com/scientificreports OPEN Expression of immunoproteasome genes is regulated by cell-intrinsic and –extrinsic factors in human Received: 06 April 2016 Accepted: 06 September 2016 cancers Published: 23 September 2016 Alexandre Rouette1,2,*, Assya Trofimov1,2,3,*, David Haberl1, Geneviève Boucher1, Vincent-Philippe Lavallée1,2,4,5, Giovanni D’Angelo4,5, Josée Hébert1,2,4,5, Guy Sauvageau1,2,4,5, Sébastien Lemieux1,3 & Claude Perreault1,2,4 Based on transcriptomic analyses of thousands of samples from The Cancer Genome Atlas, we report that expression of constitutive proteasome (CP) genes (PSMB5, PSMB6, PSMB7) and immunoproteasome (IP) genes (PSMB8, PSMB9, PSMB10) is increased in most cancer types. In breast cancer, expression of IP genes was determined by the abundance of tumor infiltrating lymphocytes and high expression of IP genes was associated with longer survival. In contrast, IP upregulation in acute myeloid leukemia (AML) was a cell-intrinsic feature that was not associated with longer survival. Expression of IP genes in AML was IFN-independent, correlated with the methylation status of IP genes, and was particularly high in AML with an M5 phenotype and/or MLL rearrangement. Notably, PSMB8 inhibition led to accumulation of polyubiquitinated proteins and cell death in IPhigh but not IPlow AML cells. Co-clustering analysis revealed that genes correlated with IP subunits in non-M5 AMLs were primarily implicated in immune processes. However, in M5 AML, IP genes were primarily co-regulated with genes involved in cell metabolism and proliferation, mitochondrial activity and stress responses. We conclude that M5 AML cells can upregulate IP genes in a cell-intrinsic manner in order to resist cell stress.
    [Show full text]
  • Proteasome Network in Prostate Carcinoma
    Prostate Cancer and Prostatic Diseases (2011) 14, 38–45 & 2011 Macmillan Publishers Limited All rights reserved 1365-7852/11 www.nature.com/pcan ORIGINAL ARTICLE Transcription alterations of members of the ubiquitin–proteasome network in prostate carcinoma OJC Hellwinkel1,2,5, LE Asong3,5, J-P Rogmann3,HSu¨ ltmann4, C Wagner2, T Schlomm2 and C Eichelberg3 1Department of Legal Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany; 2Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; 3Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany and 4Working Group Cancer Genome Research, Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany The purpose of this work was to investigate the role of the ubiquitin–proteasome network (UPN) in prostate cancer (PCA) and to elicit potential markers for this disease. The UPN represents a key factor in the maintenance of cellular homoeostasis as a result of its fundamental function in the regulation of intracellular protein degradation. Members of this network have a role in the biology of haematological and solid tumours. Tumour cells and normal epithelial cells from 22 prostatectomy specimens were isolated by laser microdissection. Prostate biopsy samples from healthy individuals served for technical calibration and as controls. Transcript levels of eight selected genes with E3 ubiquitin ligase activity (labelling target proteins for proteasome degradation) and two genes belonging to the proteasome–multienzyme complex itself were analysed by quantitative real-time RT-PCR. The proteasome genes PSMC4 and PSMB5 and the E3 ubiquitin ligase NEDD4L were significantly and coherently upregulated in PCA cells compared with the corresponding adjacent normal prostate tissue.
    [Show full text]
  • Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer
    Thomas Jefferson University Jefferson Digital Commons Department of Cancer Biology Faculty Papers Department of Cancer Biology 5-1-2017 Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer. Jeffrey D. Thomas Drexel University Charles G. Longen Drexel University Halley M. Oyer Drexel University Nan Chen Drexel University FChristinaollow this M. and Maher additional works at: https://jdc.jefferson.edu/cbfp Drexel University Part of the Medical Pharmacology Commons, and the Oncology Commons Let us know how access to this document benefits ouy See next page for additional authors Recommended Citation Thomas, Jeffrey D.; Longen, Charles G.; Oyer, Halley M.; Chen, Nan; Maher, Christina M.; Salvino, Joseph M.; Kania, Blase; Anderson, Kelsey N.; Ostrander, William F.; Knudsen, Karen E.; and Kim, Felix J., "Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer." (2017). Department of Cancer Biology Faculty Papers. Paper 133. https://jdc.jefferson.edu/cbfp/133 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Cancer Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected].
    [Show full text]
  • Shinydepmap, a Tool to Identify Targetable Cancer Genes and Their Functional Connections from Cancer Dependency Map Data
    TOOLS AND RESOURCES shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data Kenichi Shimada*, John A Bachman, Jeremy L Muhlich, Timothy J Mitchison Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, United States Abstract Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community, we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/ depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to (1) predict the efficacy and selectivity of drugs targeting particular genes; (2) identify maximally sensitive cell lines for testing a drug; (3) target hop, that is, navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and (4) identify novel pathways driving cancer cell growth and survival. *For correspondence: [email protected]. Introduction edu Cancer is a disease of the genome. Hundreds, if not thousands, of driver mutations cause cancer in different patients (MC3 Working Group et al., 2018), and extensive collaborative efforts such as Competing interest: See the Cancer Genome Atlas Program (TCGA) have helped discover them (The Cancer Genome Atlas page 17 Research Network, 2019).
    [Show full text]
  • Secretomic Profiling of Cells from Hollow Fiber Bioreactor Reveals PSMA3 As a Potential Cholangiocarcinoma Biomarker
    INTERNATIONAL JOURNAL OF ONCOLOGY Secretomic profiling of cells from hollow fiber bioreactor reveals PSMA3 as a potential cholangiocarcinoma biomarker CHRIS VERATHAMJAMRAS1, CHURAT WEERAPHAN1,2, DARANEE CHOKCHAICHAMNANKIT1, KAMOLWAN WATCHARATANYATIP1, PANTIPA SUBHASITANONT1, PENCHATR DISKUL-NA-AYUDTHAYA1, KANOKWAN MINGKWAN3, VIRAT LUEVISADPAIBUL4, SOMCHAI CHUTIPONGTANATE5, VORARATT CHAMPATTANACHAI1, JISNUSON SVASTI1,6 and CHANTRAGAN SRISOMSAP1 1Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210; 2Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla 90110; 3Department of Surgery, Sappasitthiprasong Hospital; 4Division of Information and Technology, Ubonrak Thonburi Hospital, Ubon Ratchathani 34000; 5Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400; 6Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand Received March 20, 2017; Accepted May 5, 2017 DOI: 10.3892/ijo.2017.4024 Abstract. Cholangiocarcinoma (CCA), derived from the bile higher than that in MNC conditioned media. Three types of duct, occurs with a relatively high incidence in Northeast proteasome subunit were also validated by immunoblotting Thailand. Early diagnosis is still hampered by the lack of and showed higher expression in the HFB system compared to sufficient biomarkers. In recent years, biomarker discovery MNC system. Proteasome subunit α type-3 (PSMA3)
    [Show full text]