Structure Article Structural Insight into the Assembly of TRPV Channels Kevin W. Huynh,1,3,4 Matthew R. Cohen,2,3,4 Sudha Chakrapani,2,3 Heather A. Holdaway,1,3 Phoebe L. Stewart,1,3 and Vera Y. Moiseenkova-Bell1,2,3,* 1Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA 2Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA 3Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA 4These authors contributed equally to this work *Correspondence:
[email protected] http://dx.doi.org/10.1016/j.str.2013.11.008 SUMMARY cytoplasmic amino- and carboxy termini (Li et al., 2011; Venka- tachalam and Montell, 2007). Most TRP channels are polymodal Transient receptor potential (TRP) proteins are a receptors that are activated and modulated by a variety of chem- large family of polymodal nonselective cation chan- ical and physical stimuli (Baez-Nieto et al., 2011). nels. The TRP vanilloid (TRPV) subfamily consists The mammalian TRPV subfamily, consisting of six members, is of six homologous members with diverse functions. the most extensively characterized subfamily of TRP channels TRPV1–TRPV4 are nonselective cation channels pro- (Vennekens et al., 2008). TRPV channels are predicted to contain posed to play a role in nociception, while TRPV5 and six homologous N-terminal ankryin repeats per monomer and a C-terminal TRP box domain (Gaudet, 2008; Ramsey et al., 2006). TRPV6 are involved in epithelial Ca2+ homeostasis.