The Role of TRP Channels in Pain and Taste Perception
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oral Thermosensing by Murine Trigeminal Neurons: Modulation by Capsaicin, Menthol, and Mustard Oil
bioRxiv preprint doi: https://doi.org/10.1101/486480; this version posted December 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Oral thermosensing by murine trigeminal neurons: modulation by capsaicin, menthol, and mustard oil Sara C.M. Leijon1, Amanda F. Neves1, Sidney A. Simon2, Nirupa Chaudhari1,3, Stephen D. Roper1,3 1) Department of Physiology & Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA 2) Department of Neurobiology, Duke University, Durham, NC, USA 3) Department of Otolaryngology, Miller School of Medicine, University of Miami, and Program in Neuroscience, University of Miami, Miami, FL, USA Running title: Trigeminal orosensory responses in the mouse Key words: Trigeminal ganglion, sensory neurons, calcium imaging, thermosensation, chemesthesis Key points summary Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol and/or mustard oil (allyl isothiocyanate, AITC) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to heat and to the above chemesthetic compounds. Capsaicin sensitizes warm trigeminal thermoreceptors and orosensory nociceptors; menthol attenuates cool thermoresponses. 1 bioRxiv preprint doi: https://doi.org/10.1101/486480; this version posted December 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract When consumed with foods, mint, mustard and chili peppers generate pronounced oral thermosensations. -
TEST YOUR TASTE Featuring a “Class Experiment” and “Try Your Own Experiment” TEACHER GUIDE
NEUROSCIENCE FOR KIDS http://faculty.washington.edu/chudler/neurok.html OUR CHEMICAL SENSES: TASTE TEST YOUR TASTE Featuring a “Class Experiment” and “Try Your Own Experiment” TEACHER GUIDE WHAT STUDENTS WILL DO · predict and then determine their ability to identify food samples by taste alone (holding the nose) and then by taste plus smell · collect all class data on identifying food samples and calculate the percentage of correct and incorrect answers for each method (with and without smell) · list factors that affect our ability to identify substances by taste · discuss the functions of the sense of taste · draw a simple diagram of the neural “circuitry” from the taste receptors to the brain · learn how to design experiments that include asking specific questions, defining control conditions, and changing one variable at a time · devise their own experiments to extend the study of the sense of taste SUGGESTED TIMES for these activities: 45 minutes for discussing background concepts and introducing the activities; 45 minutes for the “Class Experiment;” and 45 minutes for “Try Your Own Experiment.” 1 SETTING UP THE LAB Supplies For the Introduction to the Lab Activities Taste papers: control papers sodium benzoate papers phenylthiourea papers Source: Carolina Biological Supply Company, 1-800-334-5551 (or other biological or chemical supply companies) For the Class Experiment Food items, cut into identical chunks, about one to two-centimeter cubes. Food cubes should be prepared ahead of time by a person wearing latex gloves and using safe preparation techniques. Store the cubes in small lidded containers, in the refrigerator. Prepare enough for each student group to have containers of four or five of the following items, or seasonal items easily available. -
On the Existence of Mechanoreceptors Within the Neurovascular Unit of the Rodent and Rabbit Brain
bioRxiv preprint doi: https://doi.org/10.1101/480921; this version posted November 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. On the existence of mechanoreceptors within the neurovascular unit of the rodent and rabbit brain Jorge Larriva-Sahd, Martha León-Olea (*), Víctor Vargas-Barroso (**), Alfredo Varela-Echavarría and Luis Concha Departments of Developmental Biology and Physiology, Instituto de Neurobiología. Campus Juriquilla. Universidad Nacional Autónoma de México. Boulevard Universitario 3001, Juriquilla, Querétaro, CP 76230, México. (*) Department of Functional Neuromorphology, Instituto Mexicano de Psiquiatría “Ramón de la Fuente Muñiz” Av México Xochimilco 101, Delegación Tlalpan CP14370, México DF, México. (**) Present address: Institute of Science and Technology Austria (IST), Am Campus 1, 3400, Klosterneuburg, Austria.Correspondence: Correspondence: Jorge Larriva-Sahd e-mail: [email protected] Telephone: 5256-234030 Orcid ID: 0000-0002-7254-0773 bioRxiv preprint doi: https://doi.org/10.1101/480921; this version posted November 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract. We describe a set of perivascular interneurons (PINs) originating a series of fibro-vesicular complexes (FVCs) throughout the gray matter of the adult rabbit and rat brain. PINs-FVCs are ubiquitous throughout the brain vasculature as defined in Golgi-impregnated specimens. -
The Role of Transient Receptor Potential Cation Channels in Ca2þ Signaling
Downloaded from http://cshperspectives.cshlp.org/ on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Transient Receptor Potential Cation Channels in Ca2þ Signaling Maarten Gees, Barbara Colsoul, and Bernd Nilius KU Leuven, Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, bus 802, Leuven, Belgium Correspondence: [email protected] The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as poly- modal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2þ permeable TRP channels 2þ 2þ 2þ generate changes in the intracellular Ca concentration, [Ca ]i,byCa entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2þ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2þ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2þ release channels in intracellular organelles. ransient receptor potential (TRP) channels choanoflagellates, yeast, and fungi are primary Tconstitute a large and functionally versatile chemo-, thermo-, or mechanosensors (Cai 2008; family of cation-conducting channel proteins, Wheeler and Brownlee 2008; Chang et al. -
Chemoreception
Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath. -
More Than Smell. COVID-19 Is Associated with Severe Impairment
medRxiv preprint doi: https://doi.org/10.1101/2020.05.04.20090902.this version posted May 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . 1 More than smell – COVID-19 is associated with severe impairment of smell, taste, and chemesthesis By-line Authors: Valentina Parma1*, Kathrin Ohla2*, Maria G. Veldhuizen3*, Masha Y Niv4, Christine E Kelly5, Alyssa J. Bakke6, Keiland W. Cooper7, Cédric Bouysset8, Nicola Pirastu9, Michele Dibattista10, RishemJit Kaur11, Marco Tullio Liuzza12, Marta Y. Pepino13, Veronika Schöpf14, Veronica Pereda- Loth15, Shannon B Olsson16, Richard C Gerkin17, Paloma Rohlfs Domínguez18, Javier Albayay19, Michael C. Farruggia20, Surabhi Bhutani21, Alexander W. FJaeldstad22, Ritesh Kumar23, Anna Menini24, Moustafa Bensafi25, Mari Sandell26, Iordanis Konstantinidis27, Antonella Di Pizio28, Federica Genovese29, Lina Öztürk30, Thierry Thomas-Danguin31, Johannes Frasnelli32, Sanne Boesveldt33, Özlem Saatci34, Luis R. Saraiva35, Cailu Lin29, Jérôme Golebiowski36, Liang-Dar Hwang37, Mehmet Hakan Ozdener29, Maria Dolors Guàrdia38, Christophe Laudamiel39, Marina Ritchie40, Jan Havlícek41, Denis Pierron42, Eugeni Roura43, Marta Navarro43, Alissa A. Nolden44, Juyun Lim45, KL Whitcroft46, Lauren R Colquitt29, Camille Ferdenzi47, Evelyn V Brindha48, Aytug Altundag49, Alberto Macchi50, Alexia Nunez-Parra51, Zara M. Patel52, Sébastien Fiorucci36, Carl M Philpott53, Barry C. Smith54, Johan N. Lundström55, Carla Mucignat56, Jane K. Parker57, Mirjam van den Brink58, Michael Schmuker59, Florian Ph.S Fischmeister60, Thomas Heinbockel61, Vonnie D.C. Shields62, Farhoud FaraJi63, Enrique Santamaría64, William E.A. Fredborg65, Gabriella Morini66, Jonas K. Olofsson65, Maryam Jalessi67, Noam Karni68, Anna D’Errico69, Rafieh Alizadeh70, Robert Pellegrino71, Pablo Meyer72, Caroline Huart73, Ben Chen74, Graciela M. -
Transient Receptor Potential Channel Promiscuity Frustrates Constellation
the sole sensor responsible for noxious cold responses in M+A+ LETTER neurons (1). However, TRPA1 is also activated by cooling and underlies at least part of the noxious cold responsiveness of Transient receptor potential channel AITC-sensitive neurons (3). Third, the authors used nicardipine 2+ promiscuity frustrates to selectively inhibit CaV1-type voltage-gated Ca channels (1). However, several dihydropyridines, including nicardipine, also constellation pharmacology act as TRPA1 agonists (4). These considerations led us to propose an alternative Sensory neurons from the trigeminal and dorsal root ganglia molecular interpretation of the difference between M+A− (DRG) have nerve endings in the skin and mucosa, where they and M+A+ neurons, which is in much better agreement with detect environmental stimuli and convey this information to published work. In accord with the authors, we conclude that the central nervous system. Several members of the transient M+A− neurons express TRPM8 but lack expression of receptor potential (TRP) superfamily of ion channels act as TRPA1. In contrast to the authors, we propose that M+A+ prime molecular sensors for thermal and chemical stimuli in neurons express TRPA1 as the prime cold and menthol these sensory neurons. However, it is incompletely understood sensor (2, 3). This interpretation is consistent with published how TRP channel expression and modulation affect the stimulus observations that menthol responses in M+A− but not in sensitivities of distinct neuronal subtypes. M+A+ neurons are inhibited by TRPM8 antagonists (5) In a recent article, Teichert et al. (1) described a “constellation and that TRPA1-mediated responses to cold in neurons are pharmacology approach” to identify and characterize subtypes characterized by a higher (colder) threshold (3). -
Chapter Four – TRPA1 Channels: Chemical and Temperature Sensitivity
CHAPTER FOUR TRPA1 Channels: Chemical and Temperature Sensitivity Willem J. Laursen1,2, Sviatoslav N. Bagriantsev1,* and Elena O. Gracheva1,2,* 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA 2Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA *Corresponding author: E-mail: [email protected], [email protected] Contents 1. Introduction 90 2. Activation and Regulation of TRPA1 by Chemical Compounds 91 2.1 Chemical activation of TRPA1 by covalent modification 91 2.2 Noncovalent activation of TRPA1 97 2.3 Receptor-operated activation of TRPA1 99 3. Temperature Sensitivity of TRPA1 101 3.1 TRPA1 in mammals 101 3.2 TRPA1 in insects and worms 103 3.3 TRPA1 in fish, birds, reptiles, and amphibians 103 3.4 TRPA1: Molecular mechanism of temperature sensitivity 104 Acknowledgments 107 References 107 Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflam- mation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function. -
Cannabinoid Receptor and Inflammation
Cannabinoid Receptor and Inflammation Newman Osafo1, Oduro Yeboah1, Aaron Antwi1, and George Ainooson1 1Kwame Nkrumah University of Science and Technology September 11, 2020 Abstract The eventual discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest with regards to finally understanding the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoid pathway, the critical role of cannabinoid receptors in signaling and mediation of neurodegeneration and other inflammatory responses as well as its potential as a drug target in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found leans heavily towards a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has already shown great promise in several preclinical and clinical trials. 1.0 Introduction Ethnopharmacological studies have shown the use of Cannabis sativa in traditional medicine for over a thousand years, with its widespread use promoted by its psychotropic effects (McCoy, 2016; Turcotte et al., 2016). The discovery of a receptor within human body, that is selectively activated by cannabinoids suggested the presence of at least one endogenous ligand for this receptor. This is confirmed by the discovery of two endogenously synthesized lipid mediators, 2-arachidonoyl-glycerol and arachidonoylethanolamide, which function as high-affinity ligands for a subfamily of cannabinoid receptors ubiquitously distributed in the central nervous system, known as the CB1 receptors (Turcotte et al., 2016). -
The TRPP2-Dependent Channel of Renal Primary Cilia Also Requires TRPM3
The TRPP2-dependent channel of renal primary cilia also requires TRPM3 Steven J. Kleene1, Brian J. Siroky2, Julio A. Landero-Figueroa3, Bradley P. Dixon4, Nolan W. Pachciarz2, Lu Lu2, and Nancy K. Kleene1 1Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; 2Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; 3Department of Chemistry, University of Cincinnati, Cincinnati, Ohio; 4Renal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado IntroductIon Primary cilia of renal epithelial cells express several members of the transient receptor potential (TRP) class of cation-conducting channel, including TRPC1, TRPM3, TRPM4, TRPP2, and TRPV4. Some cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by defects in TRPP2 (also called polycystin-2, PC2, or PKD2). A large-conductance, TRPP2- dependent channel in renal cilia has been well described, but it is not known whether this channel includes any other protein subunits. Methods To study this question, we investigated the pharmacology of the TRPP2-dependent channel through electrical recordings from the cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, results The pharmacology was found to match that of TRPM3 channels. The ciliary TRPP2-dependent channel is known to be activated by depolarization and/or increasing cytoplasmic Ca2+. This activation was greatly enhanced by external pregnenolone sulfate, an agonist of TRPM3 channels. Pregnenolone sulfate did not change the current-voltage relation of the channel. CIM0216, another TRPM3 agonist, modestly increased the activity of the ciliary channels. The channels were effectively blocked by isosakuranetin, a specific inhibitor of TRPM3 channels. -
Trpc, Trpv and Vascular Disease | Encyclopedia
TRPC, TRPV and Vascular Disease Subjects: Biochemistry Submitted by: Tarik Smani Hajami Definition Ion channels play an important role in vascular function and pathology. In this review we gave an overview of recent findings and discussed the role of TRPC and TRPV channels as major regulators of cellular remodeling and consequent vascular disorders. Here, we focused on their implication in 4 relevant vascular diseases: systemic and pulmonary artery hypertension, atherosclerosis and restenosis. Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. 1. Introduction Blood vessels are composed essentially of two interacting cell types: endothelial cells (ECs) from the tunica intima lining of the vessel wall and vascular smooth muscle cells (VSMCs) from tunica media of the vascular tube. Blood vessels are a complex network, and they differ according to the tissue to which they belong, having diverse cell expressions, structures and functions [1][2][3]. -
Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.