Pharmacology for PAIN: Prescribing Controlled Substances

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacology for PAIN: Prescribing Controlled Substances The Impact of Pain Pharmacology for PAIN: The National Center for Health Prescribing Controlled Statistics estimates that 32.8% of the U.S. population has persistent pain ~94 million U.S. residents have episodic or Substances persistent pain (1 in every 5 adults) Judith A. Kaufmann, Dr PH, FNP-BC Treatment for chronic pain rarely Robert Morris University results in complete relief and full functional recovery Of patients diagnosed with chronic pain and treated by a PCP, 64 percent report persistent pain two years after treatment initiation US Statistics: The Alarming Impact of Pain Facts Pain ranks low on medical tx priority Americans constitute 4.6% of world’s only 15% of primary care physicians report that they "enjoy" treating patients with chronic pain population-but consume ~ 80% of world’s Dahl et al., and Redford (2002) found that patients opioid supply said they fear dying in pain more than they fear death Americans consume 99% of world supply of hydrocodone Pain over the past 10 years has been designated the 5th vital sign Between 1999 and 2006, the number of people >age 12 using illicit prescription Pain is 3rd leading cause of absence pain relievers doubled from 2.6 to 5.2 from work million 2006 National Survey on Drug Use and Health (NSDUH) Are we the Pushers? Can we be found guilty? Since 1999, opioid analgesic poisonings on 55.7% of users obtained drugs from a death certificates increased 91% friend or relative who had been prescribed the drugs from 1 provider During same period, fatal heroin and cocaine poisonings increased 12.4% and 22.8% 19.1% of users obtained their drug directly respectively from 1 provider In 2008, 36,450 opioid deaths were 1.6% reported doctor shopping reported 3.9% reported purchasing drugs from a CDC, 2011 dealer Male:female ratio = 1.5:1 but death rate for females ia 20x higher than males 1 Is opioid abuse a recent Classifications of Pain phenomenon? Acute V. Chronic Pain relief and euphoric Acute pain has easily defined onset and is effects of opioids were transient well known to Sumerians • Occurs only between the time of tissue injury and and Egyptians (4000- tissue recovery 2000 BC) Chronic pain persists or recurs over extended Ancient Greeks first period of time and interferes with patient’s identified and used the functioning latex of immature seed • Associated with depression and dysfunction and capsules of the poppy diminished quality of life flower derived from opium • Much more complex and difficult to treat — (Papaver somniferum). Classifications of Pain Nociceptive pain Nociceptive V. Neuropathic Somatic nociceptive: originates in skin or skin structures Nociceptive: Primary sensory neurons • Stimulation of pain receptors (nociceptors) located Well localized to specific area in the body throughout the body • e.g., tendinitis, post surgical pain • Respond to noxious stimuli- thermal, mechanical, chemical Visceral nociceptive: originates in the internal Can be further subdivided into somatic and organs as a result of infiltration, compression, visceral pain stretching Difficult to localize and often referred to distant sites • e.g., MI pain, pancreatic pain, GB pain Both types of nociceptive pain respond to both non steroidal anti-inflammatories and opioids Chemical Mediators of Pain Chemical Mediators of Pain Initiate or perpetuate continuing stimulation of small pain conducting fibers Neurotransmitters: Acetylcholine and histamines Serotonin • Influences pain perception Polypeptides: Bradykinins, prostaglandins (PG), and substance P Blocking any of these substances minimizes pain signals and the perception of pain Targets for pharmacologic agents to control pain 2 “just don’t inhale…”: Cannabinoid Pain-Modulating receptors receptors and endogenous cannabinoids have Tolerance for pain varies person-person become a focus for research on pain regulation May be due to individual production of endogenous pain relieving substances Two cannabinoid receptors : • CB1-expressed in the brain, SC, and Enkephalins and endorphins • β-endorphin is the most important endogenous analgesic sensory neurons identified to date • CB1 receptors appear to be responsible Released by the pituitary in response to painful for the euphoric and anticonvulsive stimulus or stressor effects of cannabis Found in bloodstream and in specific neurons • CB2-expressed in non-neural tissue and Once released, β-endorphin stimulates inhibitory immune cells, including microglia neuronal receptors (opioid receptors) • Microglia: glial cells that acts as first line of active The mu (μ) receptor (an opioid receptor) inhibits the immune defense in the CNS transmission of pain signals to and from the higher • CB2 receptors appear to be responsible for brain centers the anti-inflammatory and possibly other These same μ receptors are stimulated by morphine- therapeutic effects of cannabis like drugs (opioids) Blocking the endocannabinoid Pain receptors and Their Biologic system: Lesson from Rimonabant Effects Receptor Biologic response to Stimulation Was in Phase III clinical trials for treatment MU (μ) Respiratory depression, physical of obesity depression, tolerance, constipation, Trials discontinued due to unexplained euphoria, miosis suicides in treatment group Kappa (κ) Spinal level analgesia and sedation Found that drug also blocked pleasure without respiratory depression, pupil center in the brain constriction (miosis) Sigma (σ) Vasomotor stimulation, psycomimetic effects, + miosis Neuropathic Pain Perception Pain There are two ways for nociceptive information to reach the CNS Originates from compression or injury to the neospinothalamic tract for "fast spontaneous peripheral nerve fibers or to the central pain" • Fast pain is felt within a .10 second of application of the pain nervous system stimulus • sharp, acute, prickling pain felt in response to mechanical and Describes as burning, shooting, electrical thermal stimulation • Aδ fiber (A delta-fibers) terminate on the dorsal horn of the • Can be dermatomal or non dermatomal in distribution spinal cord where they synapse with the dendrites of the neospinothalamic tract. E.g., post herpetic neuralgia, trigeminal neuralgia, paleospinothalamic tract for "slow increasing pain". diabetic neuropathy • Slow pain is transmitted via slower type C fibers • neurons terminate throughout the brain stem (thalamus, Less responsive to analgesics or anti- medulla,pons and midbrain inflammatories • Slow pain is stimulated by chemical stimulation poorly localized May require antidepressants, anticonvulsants described as an aching, throbbing or burning pain 3 When nociceptors become sensitized (ie, more responsive), their thresholds are reduced, thus causing hyperalgesia (ie, hypersensitivity to pain) The CNS discards more than 99% Bradykinin, histamine, leukotrienes, of all incoming signals as prostaglandins, serotonin, and K+ that are often irrelevant released near damaged or dying cells sensitize nociceptors. K+ activates the nociceptors. Substance P is also released from nociceptors through an axon reflex causing hyperalgesia, vasodilatation and increased capillary permeability Glutamate may be co-released with substance P from C-fibre terminals The gate-control hypothesis of pain Structural Brain Changes Pain transmission is suppressed by signals in thick myelinated Short term opioid use has been associated afferents with gray matter changes in patients with Pain sensation is enhanced by signals in thin afferents chronic pain Inhibitory interneurons(in dorsal LONG TERM gray matter changes horn of the SC) perform the gate- correlated with the dose of morphine after control through a special type of only one month of use pre-synaptic inhibition called primary afferent depolarization Changes persisted an average of 4.7 months (PAD), and the receptors on the after drug stopped cell body of the secondary neuron • Younger, et al., 2011 is the gate Recommended Order of Treatment for Pain Severity of Pain Agents Comments Mild to Moderate Acetaminophen, Maximum doses should be ASA, NSAIDs used before proceeding to opioids Opioid Analgesics Moderate to Severe Codeine, Usually prepared in hydrocodone, combination with non- oxycodone, opioid analgesics BLACK BOX WARNING: Use Cautiously. propoxyphene Side effects limit dosing Can lead to “pain in the …” for the Severe Morphine, MSO4 is the gold standard oxycodone, in all patients ~ including provider hydromorphone, the elderly fentanyl, meperidine 4 General Overview Analgesic Effects Bind with one of four opiate receptors Analgesic effects associated with binding to μ Opioid analgesics are: and κ receptors • Full agonists= morphine, hydrocodone, Associated with unexplained loss, hydromorphone, fentanyl, methadone, misplacement codeine, oxycodone • Partial agonist-antagonist =pentzocine (Talwin) Frequently the drug of choice for dogs Can precipitate withdrwawal • Weak agonist= Tramadol (Ultram) Drugs most often flushed down the toilet Activation of μ opioid receptors is associated with analgesia and undesired effects Difficult names for patients to recall Respiratory depression, euphoria, mydriasis, • Kaufmann, et al., 1988-2012 sedation, nausea, tolerance Agonist activity at the opiate μ- or κ-receptor can result in analgesia, initial miosis followed by mitosis, and/or decreased body temperature Opioids are classified by their ability to stimulate (agonist) or block (antagonist) Opioid Action opioid receptors Opiate agonists alter perception of
Recommended publications
  • Chapter Four – TRPA1 Channels: Chemical and Temperature Sensitivity
    CHAPTER FOUR TRPA1 Channels: Chemical and Temperature Sensitivity Willem J. Laursen1,2, Sviatoslav N. Bagriantsev1,* and Elena O. Gracheva1,2,* 1Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA 2Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA *Corresponding author: E-mail: [email protected], [email protected] Contents 1. Introduction 90 2. Activation and Regulation of TRPA1 by Chemical Compounds 91 2.1 Chemical activation of TRPA1 by covalent modification 91 2.2 Noncovalent activation of TRPA1 97 2.3 Receptor-operated activation of TRPA1 99 3. Temperature Sensitivity of TRPA1 101 3.1 TRPA1 in mammals 101 3.2 TRPA1 in insects and worms 103 3.3 TRPA1 in fish, birds, reptiles, and amphibians 103 3.4 TRPA1: Molecular mechanism of temperature sensitivity 104 Acknowledgments 107 References 107 Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflam- mation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function.
    [Show full text]
  • Cannabinoid Receptor and Inflammation
    Cannabinoid Receptor and Inflammation Newman Osafo1, Oduro Yeboah1, Aaron Antwi1, and George Ainooson1 1Kwame Nkrumah University of Science and Technology September 11, 2020 Abstract The eventual discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest with regards to finally understanding the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoid pathway, the critical role of cannabinoid receptors in signaling and mediation of neurodegeneration and other inflammatory responses as well as its potential as a drug target in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found leans heavily towards a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has already shown great promise in several preclinical and clinical trials. 1.0 Introduction Ethnopharmacological studies have shown the use of Cannabis sativa in traditional medicine for over a thousand years, with its widespread use promoted by its psychotropic effects (McCoy, 2016; Turcotte et al., 2016). The discovery of a receptor within human body, that is selectively activated by cannabinoids suggested the presence of at least one endogenous ligand for this receptor. This is confirmed by the discovery of two endogenously synthesized lipid mediators, 2-arachidonoyl-glycerol and arachidonoylethanolamide, which function as high-affinity ligands for a subfamily of cannabinoid receptors ubiquitously distributed in the central nervous system, known as the CB1 receptors (Turcotte et al., 2016).
    [Show full text]
  • N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation Via Nonhematopoietic TRPV1
    N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 This information is current as Samira K. Lawton, Fengyun Xu, Alphonso Tran, Erika of October 1, 2021. Wong, Arun Prakash, Mark Schumacher, Judith Hellman and Kevin Wilhelmsen J Immunol 2017; 199:1465-1475; Prepublished online 12 July 2017; doi: 10.4049/jimmunol.1602151 http://www.jimmunol.org/content/199/4/1465 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/07/12/jimmunol.160215 Material 1.DCSupplemental http://www.jimmunol.org/ References This article cites 69 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/199/4/1465.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 Samira K.
    [Show full text]
  • Transient Receptor Potential Cation Channel, Subfamily C, Member 5 (TRPC5) Is a Cold-Transducer in the Peripheral Nervous System
    Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system Katharina Zimmermanna,b,1,2, Jochen K. Lennerza,c,d,1,3, Alexander Heina,1,4, Andrea S. Linke, J. Stefan Kaczmareka,b, Markus Dellinga, Serdar Uysala, John D. Pfeiferc, Antonio Riccioa, and David E. Claphama,b,f,5 Departments of aCardiology, Manton Center for Orphan Disease, and bNeurobiology, Harvard Medical School, Boston, MA 02115; cDepartment of Pathology and Immunology, Washington University, St. Louis, MO, 63110; dDepartment of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02116; eDepartment of Physiology and Pathophysiology, University Erlangen, 91054 Erlangen, Germany; and fHoward Hughes Medical Institute, Harvard Medical School, Children’s Hospital Boston, Boston, MA 02115 Contributed by David E. Clapham, September 20, 2011 (sent for review August 9, 2011) Detection and adaptation to cold temperature is crucial to survival. affected perforce by temperature, even if driven solely by con- Cold sensing in the innocuous range of cold (>10–15 °C) in the ventional NaV and KV channels—but high Q10 channels are likely mammalian peripheral nervous system is thought to rely primarily suspects in encoding temperature changes. Although TRPM8 on transient receptor potential (TRP) ion channels, most notably (a menthol receptor) is generally considered the primary cold – the menthol receptor, TRPM8. Here we report that TRP cation sensor for innocuous cold (11 13), and TRPA1 participates in channel, subfamily C member 5 (TRPC5), but not TRPC1/TRPC5 het- noxious cold sensing (9, 10) (14), many cold-sensitive neurons eromeric channels, are highly cold sensitive in the temperature lack TRPM8 as well as TRPA1 (15).
    [Show full text]
  • Substance P Receptor (NK1) in the Trigeminal Dorsal Horn
    The Journal of Neuroscience, June 1, 2000, 20(11):4345–4354 ␮-Opioid Receptors Often Colocalize with the Substance P Receptor (NK1) in the Trigeminal Dorsal Horn Sue A. Aicher, Ann Punnoose, and Alla Goldberg Weill Medical College of Cornell University, Department of Neurology and Neuroscience, Division of Neurobiology, New York, New York 10021 Substance P (SP) is a peptide that is present in unmyelinated neurons may contain receptors at sites distant from the peptide primary afferents to the dorsal horn and is released in response release site. With regard to opioid receptors, we found that to painful or noxious stimuli. Opiates active at the ␮-opiate many MOR-immunoreactive dendrites also contain NK1 (32%), receptor (MOR) produce antinociception, in part, through mod- whereas a smaller proportion of NK1-immunoreactive dendrites ulation of responses to SP. MOR ligands may either inhibit the contain MOR (17%). Few NK1 dendrites (2%) were contacted release of SP or reduce the excitatory responses of second- by MOR-immunoreactive afferents. These results provide the order neurons to SP. We examined potential functional sites for first direct evidence that MORs are on the same neurons as interactions between SP and MOR with dual electron micro- NK1 receptors, suggesting that MOR ligands directly modulate scopic immmunocytochemical localization of the SP receptor SP-induced nociceptive responses primarily at postsynaptic (NK1) and MOR in rat trigeminal dorsal horn. We also examined sites, rather than through inhibition of SP release from primary the relationship between SP-containing profiles and NK1- afferents. This colocalization of NK1 and MORs has significant bearing profiles. We found that 56% of SP-immunoreactive implications for the development of pain therapies targeted at terminals contact NK1 dendrites, whereas 34% of NK1- these nociceptive neurons.
    [Show full text]
  • The Role of Substance P in Opioid Induced Reward
    The Role of Substance P in Opioid Induced Reward Item Type text; Electronic Dissertation Authors Sandweiss, Alexander Jordan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 14:53:26 Link to Item http://hdl.handle.net/10150/621568 THE ROLE OF SUBSTANCE P IN OPIOID INDUCED REWARD by Alexander J. Sandweiss __________________________ Copyright © Alexander J. Sandweiss 2016 A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHARMACOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Alexander J. Sandweiss, titled The Role of Substance P in Opioid Induced Reward and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________ Date: June 13, 2016 Edward D. French, Ph.D. _______________________________________________________________ Date: June 13, 2016 Rajesh Khanna, Ph.D. _______________________________________________________________ Date: June 13, 2016 Victor H. Hruby, Ph.D. _______________________________________________________________ Date: June 13, 2016 Naomi Rance, M.D., Ph.D. _______________________________________________________________ Date: June 13, 2016 Todd W. Vanderah, Ph.D. Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Identification of Substance P Precursor Forms in Human Brain Tissue
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 3921-3924, June 1985 Neurobiology Identification of substance P precursor forms in human brain tissue (prohormones/tachykinins/hypothalamus/substantia nigra/caudate nucleus) FRED NYBERG, PIERRE LE GREvls, AND LARS TERENIUS Department of Pharmacology, University of Uppsala, S-751 24 Uppsala, Sweden Communicated by Tomas Hokfelt, January 28, 1985 ABSTRACT Substance P prohormones were identified in glycine (19). Enzymes involved in the processing of the the caudate nucleus, hypothalamus, and substantia nigra of precursors are incompletely known. human brain. A polypeptide fraction of acidic brain extracts The present paper reports the identification of substance P was fractionated on Sephadex G-50. The Iyophilized fractions precursors in human brain. The strategy for the experimental were sequentially treated with trypsin and a substance P- approach is based on the enzymatic generation in vitro of a degrading enzyme with strong preference toward the Phe7- unique peptide fragment (20, 21). Trypsin treatment of any Phe' and Phe8-Gly9 bonds. The released substance P(1-7) product of the preprotachykinins containing the substance P fragment was isolated by ion-exchange chromatography and sequence generates a fragment with the NH2-terminal region quantitated by a specific radioimmunoassay. Confirmation of identical with that of the native peptide. Further conversion the structure of the isolated radioimmunoassay-active frag- of this fragment with an endopeptidase capable of hydrolyz- ment was achieved by electrophoresis and HPLC. By using this ing substance P at the Phe7-Phe8 bond releases the substance enzymatic/radioimmunoassay procedure, two polypeptide P(1-7) sequence as a fragment that can be recovered by fractions of apparent M, 5000 and 15,000, respectively, were ion-exchange chromatography and quantitated by a specific identified.
    [Show full text]
  • The Role of TRP Channels in Pain and Taste Perception
    International Journal of Molecular Sciences Review Taste the Pain: The Role of TRP Channels in Pain and Taste Perception Edwin N. Aroke 1 , Keesha L. Powell-Roach 2 , Rosario B. Jaime-Lara 3 , Markos Tesfaye 3, Abhrarup Roy 3, Pamela Jackson 1 and Paule V. Joseph 3,* 1 School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] (E.N.A.); [email protected] (P.J.) 2 College of Nursing, University of Florida, Gainesville, FL 32611, USA; keesharoach@ufl.edu 3 Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] (R.B.J.-L.); [email protected] (M.T.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +1-301-827-5234 Received: 27 July 2020; Accepted: 16 August 2020; Published: 18 August 2020 Abstract: Transient receptor potential (TRP) channels are a superfamily of cation transmembrane proteins that are expressed in many tissues and respond to many sensory stimuli. TRP channels play a role in sensory signaling for taste, thermosensation, mechanosensation, and nociception. Activation of TRP channels (e.g., TRPM5) in taste receptors by food/chemicals (e.g., capsaicin) is essential in the acquisition of nutrients, which fuel metabolism, growth, and development. Pain signals from these nociceptors are essential for harm avoidance. Dysfunctional TRP channels have been associated with neuropathic pain, inflammation, and reduced ability to detect taste stimuli. Humans have long recognized the relationship between taste and pain. However, the mechanisms and relationship among these taste–pain sensorial experiences are not fully understood.
    [Show full text]
  • Prostaglandin E, Enhances Bradykinin-Stimulated Release of Neuropeptides from Rat Sensory Neurons in Culture
    The Journal of Neuroscience, August 1994, 14(E): 4987-4997 Prostaglandin E, Enhances Bradykinin-stimulated Release of Neuropeptides from Rat Sensory Neurons in Culture M. Ft. Vasko,l** W. B. Campbell,3 and K. J. Waite’ ‘Department of Pharmacology and Toxicology and 2Department of Anesth’esia, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, and 3Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 Prostaglandins are known to enhance the inflammatory and of these agents produces symptoms characteristic of inflam- nociceptive actions of other chemical mediators of inflam- mation such as vasodilatation and swelling (seereview by Higgs mation such as bradykinin. One possible mechanism for this et al., 1984). Intradermal or intraarterial administration of bra- sensitizing action is that prostanoids augment the release dykinin also elicits nociceptive responsesin animal models of of neuroactive substances from sensory neurons. To initially pain and produces overt pain in man (Ferreira, 1972; Juan and test this hypothesis, we examined whether selected pros- Lembeck, 1974; Manning et al., 199 I ; seealso review by Dray taglandins could enhance the resting or bradykinin-evoked and Perkins, 1993). Administration of prostaglandins in con- release of immunoreactive substance P (ISP) and/or im- centrations similar to those found in inflammatory exudates munoreactive calcitonin gene-related peptide (ICGRP) from does not cause overt pain, but rather increasessensitivity to sensory neurons in culture. Bradykinin alone causes a con- noxious stimuli (Willis and Cornelsen, 1973; Ferreira et al., centration-dependent increase in the release of iSP and 1978; Juan, 1978; Taiwo and Levine, 1989). iCGRP from isolated sensory neurons, and this action is abol- Various components of inflammation result from activation ished in the absence of extracellular calcium.
    [Show full text]
  • OR Essential Drug List Updated: July 1, 2020
    Oregon Essential Rx Drug List The Essential Rx Drug List includes a list of drugs covered by Health Net. This drug list is for Oregon. The drug list is updated often and may change. To get the most up-to-date information, you may view the latest drug list on our website at www.healthnet.com/ordruglistpdf or call us at the toll-free telephone number on your Health Net ID card. OR Essential Drug List Updated: July 1, 2020 Welcome to Health Net What is the Essential Rx Drug List? The Essential Rx Drug List or formulary is a list of covered drugs used to treat common diseases or health problems. The drug list is selected by a committee of doctors and pharmacists who meet regularly to decide which drugs should be included. The committee reviews new drugs and new information about existing drugs and chooses drugs based on: • Safety; • Effectiveness; • Side effects; and • Value (If two drugs are equally effective, the less costly drug will be preferred) How much will I pay for my drugs? To figure out how much you will pay for a drug, the abbreviations in the table below appear in the Drug Tier column on the formulary. The copayment or coinsurance levels are defined in the table below. If you do not know your copayment or coinsurance for each tier, please refer to your Summary of Benefits or other plan documents. Abbreviation Copayment/Coinsurance Description 1 Tier 1 copayment or Generic drugs coinsurance 2 Tier 2 copayment or Preferred brand drugs coinsurance 3 Tier 3 copayment or Non-preferred brand drugs coinsurance SP Specialty copayment or Specialty drugs.
    [Show full text]
  • Centene Employee
    Centene Employee PREFERRED DRUG LIST The Centene Employee Formulary includes a list of drugs covered by your prescription benefit. The formulary is updated often and may change. To get the most up-to-date information, you may view the latest formulary on our website at https://pharmacy.envolvehealth.com/members/formulary.html or call us at 1-844-262-6337. Updated: December 1, 2020 Table of Contents What is the Centene Employee Formulary?...................... .....................................................................ii How are the drugs listed in the categorical list?................................... .................................................ii How much will I pay for my drugs?.......................................................................................................ii How do I find a drug on the Drug List?..................................................................................................iii Are there any limits on my drug coverage?.............................................................................................iv Can I go to any pharmacy?......................................................................................................................iv Can I use a mail order pharmacy?...........................................................................................................v How can I get prior authorization or an exception to the rules for drug coverage?................................v How can I save money on my prescription drugs?.................................................................................v
    [Show full text]
  • Substance P Enhances Cholinergic Receptor Desensitization in a Clonal Nerve Cell Line (22Na+ Uptake/Receptor Modulation/Histrionicotoxin/Local Anesthetics) WILLIAM B
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 1, pp. 634-638, January 1980 Neurobiology Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line (22Na+ uptake/receptor modulation/histrionicotoxin/local anesthetics) WILLIAM B. STALLCUP AND JAMES PATRICK Developmental Biology and Neurobiology Laboratories, The Salk Institute for Biological Studies, P.O. Box 85800, San Diego, California 92138 Communicated by Robert W. Holley, October 3, 1979 ABSTRACT Substance P inhibits carbamylcholine-induced MATERIALS AND METHODS 22Na+ uptake in the clonal cell line PC12. This inhibition is noncompetitive with agonist but comretitive with Na+. Oc- The PC12 cell line is that derived by Greene and Tischler (11). tahydrohistrionicotoxin (H8-HTX) also e iibits this same pattern For the 22Na+ influx assays the cells were plated on polylys- of inhibition. Moreover, both substance P and HrHTX are very ine-coated 35-mm tissue culture dishes and used within 24 hr. effective in enhancing agonist-induced receptor desensitization. uptake stimulated chloride (car- Local anesthetics, such as QX222, also cause inhibition that is 22Na+ by carbamylcholine competitive with Na+, but they have only marginal effects on bachol) was measured at 220C as described (12-14). All ex- desensitization. Because substance P and HS-HTX cannot by periments were performed in the presence of 2 mM ouabain themselves cause desensitization, their action is dependent on to inhibit Na+ extrusion. Preincubation with ouabain was not and synergistic with the action of agonist. Furthermore, sub- found to be necessary. The 22Na+ uptake seen in the presence stance P and HS-HTX do not appear to compete for the same site of ouabain was subtracted from the overall rate found in the as QX222, which is thought to bind to the ion channel.
    [Show full text]