The Ca2+-Permeable Cation Transient Receptor Potential
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression of Transient Receptor Potential Channels in the Ependymal Cells of the Developing Rat Brain
Original Article http://dx.doi.org/10.5115/acb.2013.46.1.68 pISSN 2093-3665 eISSN 2093-3673 Expression of transient receptor potential channels in the ependymal cells of the developing rat brain Kwang Deog Jo1, Kyu-Seok Lee2, Won Taek Lee3, Mi-Sun Hur2, Ho-Jeong Kim2 1Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, 2Department of Anatomy, Kwandong University College of Medicine, Gangneung, 3Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea Abstract: Cerebrospinal fluid (CSF) plays an important role in providing brain tissue with a stable internal environment as well as in absorbing mechanical and thermal stresses. From its initial composition, derived from the amniotic fluid trapped by the closure of neuropores, CSF is modified by developing and differentiating ependymal cells lining the ventricular surface or forming the choroid plexus. Its osmolarity and ionic composition brings about a change through the action of many channels expressed on the ependymal cells. Some newly discovered transient receptor potential (TRP) channels are known to be expressed in the choroid plexus ependyma. To detect additional TRP channel expression, immunohistochemical screening was performed at the choroid plexus of 13-, 15-, 17-, and 19-day embryos, using antibodies against TRPV1, TRPV3, and TRPA1, and the expression was compared with those in the adult TRP channels. The level of TRP channel expression was higher in the choroid plexus which suggests more active functioning of TRP channels in the developing choroid plexus than the ventricular lining ependyma in the 15- and 17-day embryos. All the expression of TRP channels decreased at the 19th day of gestation. -
Investigational Drugs in Early Phase Clinical Trials Targeting Thermotransient Receptor Potential (Thermotrp) Channels
Expert Opinion on Investigational Drugs ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ieid20 Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels Asia Fernández-Carvajal , Rosario González-Muñiz , Gregorio Fernández- Ballester & Antonio Ferrer-Montiel To cite this article: Asia Fernández-Carvajal , Rosario González-Muñiz , Gregorio Fernández- Ballester & Antonio Ferrer-Montiel (2020): Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels, Expert Opinion on Investigational Drugs, DOI: 10.1080/13543784.2020.1825680 To link to this article: https://doi.org/10.1080/13543784.2020.1825680 Published online: 29 Sep 2020. Submit your article to this journal Article views: 31 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ieid20 EXPERT OPINION ON INVESTIGATIONAL DRUGS https://doi.org/10.1080/13543784.2020.1825680 REVIEW Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels Asia Fernández-Carvajala, Rosario González-Muñizb, Gregorio Fernández-Ballestera and Antonio Ferrer-Montiela aInstituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández, Alicante, Spain; bInstituto De Química Médica, CSIC, Madrid, Spain ABSTRACT ARTICLE HISTORY Introduction: Thermo transient receptor potential (thermoTRP) channels are some of the most inten Received 15 June 2020 sely pursued therapeutic targets of the past decade. They are considered promising targets of numer Accepted 15 September ous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, 2020 TRPM8 and TRPA1, have reached clinical development, but none has been approved for clinical practice KEYWORDS yet. -
Snapshot: Mammalian TRP Channels David E
SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/- -
TRPV4: a Physio and Pathophysiologically Significant Ion Channel
International Journal of Molecular Sciences Review TRPV4: A Physio and Pathophysiologically Significant Ion Channel Tamara Rosenbaum 1,* , Miguel Benítez-Angeles 1, Raúl Sánchez-Hernández 1, Sara Luz Morales-Lázaro 1, Marcia Hiriart 1 , Luis Eduardo Morales-Buenrostro 2 and Francisco Torres-Quiroz 3 1 Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] (M.B.-A.); [email protected] (R.S.-H.); [email protected] (S.L.M.-L.); [email protected] (M.H.) 2 Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; [email protected] 3 Departamento de Bioquímica y Biología Estructural, División Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07 Received: 3 May 2020; Accepted: 24 May 2020; Published: 28 May 2020 Abstract: Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here. -
Heteromeric TRP Channels in Lung Inflammation
cells Review Heteromeric TRP Channels in Lung Inflammation Meryam Zergane 1, Wolfgang M. Kuebler 1,2,3,4,5,* and Laura Michalick 1,2 1 Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] (M.Z.); [email protected] (L.M.) 2 German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany 3 German Center for Lung Research (DZL), 35392 Gießen, Germany 4 The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada 5 Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial bar- rier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protec- tive strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review. Keywords: heteromeric TRP assemblies; pulmonary inflammation; endothelial permeability; TRPC3/6; TRPV1/4; TRPC1/4 Citation: Zergane, M.; Kuebler, W.M.; Michalick, L. Heteromeric TRP Channels in Lung Inflammation. Cells 1. Introduction 2021, 10, 1654. https://doi.org Pulmonary microvascular endothelial cells are a key constituent of the blood air bar- /10.3390/cells10071654 rier that has to be extremely thin (<1 µm) to allow for rapid and efficient alveolo-capillary gas exchange. -
Ca Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart
Journal of Cardiovascular Development and Disease Review Ca2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases Jianlin Feng 1, Maria K. Armillei 1, Albert S. Yu 1, Bruce T. Liang 1, Loren W. Runnels 2,* and Lixia Yue 1,* 1 Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; [email protected] (J.F.); [email protected] (M.K.A.); [email protected] (A.S.Y.); [email protected] (B.T.L.) 2 Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA * Correspondence: [email protected] (L.W.R.); [email protected] (L.Y.) Received: 11 August 2019; Accepted: 18 September 2019; Published: 23 September 2019 Abstract: Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane. -
Ion Channels 3 1
r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia. -
Macromolecular Assembly of Polycystin-2 Intracytosolic C-Terminal Domain
Macromolecular assembly of polycystin-2 intracytosolic C-terminal domain Frederico M. Ferreiraa,b,1, Leandro C. Oliveirac, Gregory G. Germinod, José N. Onuchicc,1, and Luiz F. Onuchica,1 aDivision of Nephrology, University of São Paulo School of Medicine, 01246-903, São Paulo, Brazil; bLaboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, 05403-900, São Paulo, Brazil; cCenter for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093; dNational Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892-2560 Contributed by José N. Onuchic, April 28, 2011 (sent for review March 20, 2011) Mutations in PKD2 are responsible for approximately 15% of the In spite of the aforementioned information and insights, the autosomal dominant polycystic kidney disease cases. This gene macromolecular assembly of PC2t homooligomer continued to encodes polycystin-2, a calcium-permeable cation channel whose be an open question. In the current work, we present the most C-terminal intracytosolic tail (PC2t) plays an important role in its comprehensive set of analyses yet performed and that show interaction with a number of different proteins. In the present PC2t forms a homotetrameric oligomer. We have proposed a study, we have comprehensively evaluated the macromolecular PC2 C-terminal domain delimitation and submitted it to a range assembly of PC2t homooligomer using a series of biophysical of biochemical and biophysical evaluations, including chemical and biochemical analyses. Our studies, based on a new delimitation cross-linking, dynamic light scattering (DLS), circular dichroism of PC2t, have revealed that it is capable of assembling as a homo- (CD) and small angle X-ray scattering (SAXS) analyses. -
Endothelial TRPV1 As an Emerging Molecular Target to Promote Therapeutic Angiogenesis
cells Review Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis Sharon Negri 1, Pawan Faris 1, Vittorio Rosti 2, Maria Rosa Antognazza 3 , Francesco Lodola 3 and Francesco Moccia 1,* 1 Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; [email protected] (S.N.); [email protected] (P.F.) 2 Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; [email protected] 3 Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; [email protected] (M.R.A.); [email protected] (F.L.) * Correspondence: [email protected] Received: 30 April 2020; Accepted: 26 May 2020; Published: 27 May 2020 Abstract: Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. -
TRPV1 Is a Physiological Regulator of Μ-Opioid Receptors
TRPV1 is a physiological regulator of μ-opioid receptors Paul C. Scherera,1, Nicholas W. Zaccora,1, Neil M. Neumannb, Chirag Vasavdaa, Roxanne Barrowa, Andrew J. Ewaldb, Feng Raoc, Charlotte J. Sumnera,d, and Solomon H. Snydera,e,f,2 aThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; bDepartment of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; cDepartment of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055; dDepartment of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205; eDepartment of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and fDepartment of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Solomon H. Snyder, November 8, 2017 (sent for review September 29, 2017; reviewed by Marc G. Caron and Gavril W. Pasternak) Opioids are powerful analgesics, but also carry significant side effects the field of pain biology. TRPV1 is a nociceptor activated by and abuse potential. Here we describe a modulator of the μ-opioid noxious heat, protons, and capsaicin, the pungent component of receptor (MOR1), the transient receptor potential channel subfamily chili peppers. TRPV1 is a nonselective cation channel, but pre- vanilloid member 1 (TRPV1). We show that TRPV1 binds MOR1 and dominantly fluxes calcium ions and is widely expressed in small- blocks opioid-dependent phosphorylation of MOR1 while leaving G diameter C-fiber neurons (16–18). TRPV1 is often coexpressed protein signaling intact. Phosphorylation of MOR1 initiates recruit- with MOR1 in peripheral nervous tissues, including dorsal root ment and activation of the β-arrestin pathway, which is responsible ganglion cells (DRGs), and is expressed at low levels throughout for numerous opioid-induced adverse effects, including the devel- the brain (2, 19–21). -
(TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) Gene and Protein Expression in Patients with Ulcerative Colitis
Hindawi Journal of Immunology Research Volume 2020, Article ID 2906845, 11 pages https://doi.org/10.1155/2020/2906845 Research Article TRPV Subfamily (TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) Gene and Protein Expression in Patients with Ulcerative Colitis Joel J. Toledo Mauriño,1,2 Gabriela Fonseca-Camarillo ,1 Janette Furuzawa-Carballeda ,3 Rafael Barreto-Zuñiga,4 Braulio Martínez Benítez ,5 Julio Granados ,6 and Jesus K. Yamamoto-Furusho 1 1Inflammatory Bowel Disease Clinic. Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 2MD/PhD Program (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04360 Coyoacán, México City, Mexico 3Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 4Department of Endoscopy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 5Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 6Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Correspondence should be addressed to Jesus K. Yamamoto-Furusho; [email protected] Received 25 October 2019; Revised 4 March 2020; Accepted 11 April 2020; Published 8 May 2020 Academic Editor: Francesca Santilli Copyright © 2020 Joel J. Toledo Mauriño et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. TRPVs are a group of receptors with a channel activity predominantly permeable to Ca2+. This subfamily is involved in the development of gastrointestinal diseases such as ulcerative colitis (UC). -
Microarray Analysis Reveals the Inhibition of Intestinal Expression Of
www.nature.com/scientificreports OPEN Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus Junmei Zhang1,3, Di Zhao1,3, Dan Yi1,3, Mengjun Wu1, Hongbo Chen1, Tao Wu1, Jia Zhou1, Peng Li1, Yongqing Hou1* & Guoyao Wu2 Porcine epidemic diarrhea virus (PEDV) infection can induce intestinal dysfunction, resulting in severe diarrhea and even death, but the mode of action underlying these viral efects remains unclear. This study determined the efects of PEDV infection on intestinal absorption and the expression of genes for nutrient transporters via biochemical tests and microarray analysis. Sixteen 7-day-old healthy piglets fed a milk replacer were randomly allocated to one of two groups. After 5-day adaption, piglets (n = 8/ group) were orally administrated with either sterile saline or PEDV (the strain from Yunnan province) 4.5 at 10 TCID50 (50% tissue culture infectious dose) per pig. All pigs were orally infused D-xylose (0.1 g/ kg BW) on day 5 post PEDV or saline administration. One hour later, jugular vein blood samples as well as intestinal samples were collected for further analysis. In comparison with the control group, PEDV infection increased diarrhea incidence, blood diamine oxidase activity, and iFABP level, while reducing growth and plasma D-xylose concentration in piglets. Moreover, PEDV infection altered plasma and jejunal amino acid profles, and decreased the expression of aquaporins and amino acid transporters (L-type amino acid