TRPV4: a Physio and Pathophysiologically Significant Ion Channel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snapshot: Mammalian TRP Channels David E
SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/- -
Heteromeric TRP Channels in Lung Inflammation
cells Review Heteromeric TRP Channels in Lung Inflammation Meryam Zergane 1, Wolfgang M. Kuebler 1,2,3,4,5,* and Laura Michalick 1,2 1 Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] (M.Z.); [email protected] (L.M.) 2 German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany 3 German Center for Lung Research (DZL), 35392 Gießen, Germany 4 The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada 5 Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial bar- rier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protec- tive strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review. Keywords: heteromeric TRP assemblies; pulmonary inflammation; endothelial permeability; TRPC3/6; TRPV1/4; TRPC1/4 Citation: Zergane, M.; Kuebler, W.M.; Michalick, L. Heteromeric TRP Channels in Lung Inflammation. Cells 1. Introduction 2021, 10, 1654. https://doi.org Pulmonary microvascular endothelial cells are a key constituent of the blood air bar- /10.3390/cells10071654 rier that has to be extremely thin (<1 µm) to allow for rapid and efficient alveolo-capillary gas exchange. -
Endothelial TRPV1 As an Emerging Molecular Target to Promote Therapeutic Angiogenesis
cells Review Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis Sharon Negri 1, Pawan Faris 1, Vittorio Rosti 2, Maria Rosa Antognazza 3 , Francesco Lodola 3 and Francesco Moccia 1,* 1 Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; [email protected] (S.N.); [email protected] (P.F.) 2 Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; [email protected] 3 Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; [email protected] (M.R.A.); [email protected] (F.L.) * Correspondence: [email protected] Received: 30 April 2020; Accepted: 26 May 2020; Published: 27 May 2020 Abstract: Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. -
TRPV1 Is a Physiological Regulator of Μ-Opioid Receptors
TRPV1 is a physiological regulator of μ-opioid receptors Paul C. Scherera,1, Nicholas W. Zaccora,1, Neil M. Neumannb, Chirag Vasavdaa, Roxanne Barrowa, Andrew J. Ewaldb, Feng Raoc, Charlotte J. Sumnera,d, and Solomon H. Snydera,e,f,2 aThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; bDepartment of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; cDepartment of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055; dDepartment of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205; eDepartment of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and fDepartment of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Solomon H. Snyder, November 8, 2017 (sent for review September 29, 2017; reviewed by Marc G. Caron and Gavril W. Pasternak) Opioids are powerful analgesics, but also carry significant side effects the field of pain biology. TRPV1 is a nociceptor activated by and abuse potential. Here we describe a modulator of the μ-opioid noxious heat, protons, and capsaicin, the pungent component of receptor (MOR1), the transient receptor potential channel subfamily chili peppers. TRPV1 is a nonselective cation channel, but pre- vanilloid member 1 (TRPV1). We show that TRPV1 binds MOR1 and dominantly fluxes calcium ions and is widely expressed in small- blocks opioid-dependent phosphorylation of MOR1 while leaving G diameter C-fiber neurons (16–18). TRPV1 is often coexpressed protein signaling intact. Phosphorylation of MOR1 initiates recruit- with MOR1 in peripheral nervous tissues, including dorsal root ment and activation of the β-arrestin pathway, which is responsible ganglion cells (DRGs), and is expressed at low levels throughout for numerous opioid-induced adverse effects, including the devel- the brain (2, 19–21). -
(TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) Gene and Protein Expression in Patients with Ulcerative Colitis
Hindawi Journal of Immunology Research Volume 2020, Article ID 2906845, 11 pages https://doi.org/10.1155/2020/2906845 Research Article TRPV Subfamily (TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) Gene and Protein Expression in Patients with Ulcerative Colitis Joel J. Toledo Mauriño,1,2 Gabriela Fonseca-Camarillo ,1 Janette Furuzawa-Carballeda ,3 Rafael Barreto-Zuñiga,4 Braulio Martínez Benítez ,5 Julio Granados ,6 and Jesus K. Yamamoto-Furusho 1 1Inflammatory Bowel Disease Clinic. Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 2MD/PhD Program (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04360 Coyoacán, México City, Mexico 3Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 4Department of Endoscopy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 5Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico 6Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico Correspondence should be addressed to Jesus K. Yamamoto-Furusho; [email protected] Received 25 October 2019; Revised 4 March 2020; Accepted 11 April 2020; Published 8 May 2020 Academic Editor: Francesca Santilli Copyright © 2020 Joel J. Toledo Mauriño et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. TRPVs are a group of receptors with a channel activity predominantly permeable to Ca2+. This subfamily is involved in the development of gastrointestinal diseases such as ulcerative colitis (UC). -
Preclinical Model Systems of Ryanodine Receptor 1-Related Myopathies and Malignant Hyperthermia
Lawal et al. Orphanet Journal of Rare Diseases (2020) 15:113 https://doi.org/10.1186/s13023-020-01384-x REVIEW Open Access Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990– 2019 Tokunbor A. Lawal1, Emily S. Wires2, Nancy L. Terry3, James J. Dowling4 and Joshua J. Todd1* Abstract Background: Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1- related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. Methods: We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O’Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. Results: Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. -
Transient Receptor Potential Cation Channel Subfamily V and Breast Cancer
Laboratory Investigation (2020) 100:199–206 https://doi.org/10.1038/s41374-019-0348-0 REVIEW ARTICLE Transient receptor potential cation channel subfamily V and breast cancer 1 2 1,3,4 Choon Leng So ● Michael J. G. Milevskiy ● Gregory R. Monteith Received: 27 September 2019 / Revised: 13 November 2019 / Accepted: 14 November 2019 / Published online: 10 December 2019 © The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2019 Abstract Transient receptor potential cation channel subfamily V (TRPV) channels play important roles in a variety of cellular processes. One example includes the sensory role of TRPV1 that is sensitive to elevated temperatures and acidic environments and is activated by the hot pepper component capsaicin. Another example is the importance of the highly Ca2+ selective channels TRPV5 and TRPV6 in Ca2+ absorption/reabsorption in the intestine and kidney. However, in some cases such as TRPV4 and TRPV6, breast cancer cells appear to overexpress TRPV channels. Moreover, TRPV mediated Ca2+ influx may contribute to enhanced breast cancer cell proliferation and other processes important in tumor progression such as angiogenesis. It appears that the overexpression of some TRPV channels in breast cancer and/or their involvement in breast 1234567890();,: 1234567890();,: cancer cell processes, processes important in the tumor microenvironment or pain may make some TRPV channels potential targets for breast cancer therapy. In this review, we provide an overview of TRPV expression in breast cancer subtypes, the roles of TRPV channels in various aspects of breast cancer progression and consider implications for future therapeutic approaches. Introduction [1]. TRP channel protein subunits have six transmembrane domains that form tetramers to create the ion channel [1, 2]. -
The Ca2+-Permeable Cation Transient Receptor Potential
1521-0111/92/3/193–200$25.00 https://doi.org/10.1124/mol.116.107946 MOLECULAR PHARMACOLOGY Mol Pharmacol 92:193–200, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW—MOLECULAR PHARMACOLOGY IN CHINA The Ca21-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases Gongxin Wang and KeWei Wang Department of Pharmacology, Qingdao University School of Pharmacy and Institute of Innovative Drugs, Qingdao University, Downloaded from Qingdao, Shandong Province, China Received December 20, 2016; accepted March 31, 2017 ABSTRACT Temperature-sensitive transient receptor potential (TRP) chan- syndrome, which is characterized by severe itching and molpharm.aspetjournals.org nels such as TRPA1 and TRPV1 have been identified as down- palmoplantar and periorificial keratoderma, unveils its crucial stream ion channel targets in the transduction of itch. As a member role in chronic itch and skin diseases. In this review, we will of the temperature-sensitive TRP family, the Ca21-permeable focus on recent progress made in the understanding of nonselective cation channel TRPV3 is expressed abundantly TRPV3 that emerges as an attractive target for developing in skin keratinocytes. Recent identification of gain-of-function effective antipruritic therapy for chronic itch or skin-related mutations of human TRPV3 from patients with Olmsted diseases. attractive target for developing antipruritic therapy in chronic Introduction at ASPET Journals on September 28, 2021 itch or skin-related diseases. Itch (also known as pruritus) is an unpleasant sensation of The superfamily of TRP channels is composed of 28 mam- the skin, provoking the desire or reflex to scratch. -
TRPV1 Activity and Substance P Release Are Required for Corneal Cold Nociception
ARTICLE https://doi.org/10.1038/s41467-019-13536-0 OPEN TRPV1 activity and substance P release are required for corneal cold nociception Fengxian Li 1,2,4, Weishan Yang1,4, Haowu Jiang1,4, Changxiong Guo 1, Andrew J.W. Huang 3, Hongzhen Hu 1 & Qin Liu1,3* As a protective mechanism, the cornea is sensitive to noxious stimuli. Here, we show that in mice, a high proportion of corneal TRPM8+ cold-sensing fibers express the heat-sensitive 1234567890():,; TRPV1 channel. Despite its insensitivity to cold, TRPV1 enhances membrane potential changes and electrical firing of TRPM8+ neurons in response to cold stimulation. This ele- vated neuronal excitability leads to augmented ocular cold nociception in mice. In a model of dry eye disease, the expression of TRPV1 in TRPM8+ cold-sensing fibers is increased, and results in severe cold allodynia. Overexpression of TRPV1 in TRPM8+ sensory neurons leads to cold allodynia in both corneal and non-corneal tissues without affecting their thermal sensitivity. TRPV1-dependent neuronal sensitization facilitates the release of the neuropep- tide substance P from TRPM8+ cold-sensing neurons to signal nociception in response to cold. Our study identifies a mechanism underlying corneal cold nociception and suggests a potential target for the treatment of ocular pain. 1 Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA. 2 Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangdong, China. 3 Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA. -
Mapping of SUMO Sites and Analysis of Sumoylation Changes Induced by External Stimuli
Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli Francis Impensa,b,c, Lilliana Radoshevicha,b,c, Pascale Cossarta,b,c,1, and David Ribeta,b,c,1 aUnité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France; bInstitut National de la Santé et de la Recherche Médicale, Unité 604, F-75015 Paris, France; and cInstitut National de la Recherche Agronomique, Unité sous-contrat 2020, F-75015 Paris, France Contributed by Pascale Cossart, July 22, 2014 (sent for review May 28, 2014) SUMOylation is an essential ubiquitin-like modification involved in Mapping the exact lysine residue to which SUMO is attached in important biological processes in eukaryotic cells. Identification of modified proteins is a critical step to get further insight into the small ubiquitin-related modifier (SUMO)-conjugatedresiduesinpro- function of SUMOylation. Indeed, the identification of SUMO teins is critical for understanding the role of SUMOylation but remains sites allows the generation of non-SUMOylatable mutants and the experimentally challenging. We have set up a powerful and high- study of associated phenotypes. Identification of SUMO sites by throughput method combining quantitative proteomics and peptide MS is not straightforward (8). Unlike ubiquitin, which leaves immunocapture to map SUMOylation sites and have analyzed changes a small diglycine (GG) signature tag on the modified lysine resi- in SUMOylation in response to stimuli. With this technique we iden- due after trypsin digestion, SUMO leaves -
Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, but Facilitates Footshock Habituation and Cytoskeletal Homeostasis
The Journal of Neuroscience, October 16, 2019 • 39(42):8315–8329 • 8315 Cellular/Molecular Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis X Katerina Papanikolopoulou,1* XIlianna G. Roussou,1* XJean Y. Gouzi,1* Martina Samiotaki,2 George Panayotou,2 X Luca Turin,1 and XEfthimios M.C. Skoulakis1 1Institute for Fundamental Biomedical Research, and 2Institute for Bioinnovation, Biomedical Sciences Research Centre “Alexander Fleming,” 16672 Vari, Greece Although the involvement of pathological tau in neurodegenerative dementias is indisputable, its physiological roles have remained elusive in part because its abrogation has been reported without overt phenotypes in mice and Drosophila. This was addressed using the recently described Drosophila tauKO and Mi{MIC} mutants and focused on molecular and behavioral analyses. Initially, we show that Drosophila tau (dTau) loss precipitates dynamic cytoskeletal changes in the adult Drosophila CNS and translation upregulation. Signif- icantly, we demonstrate for the first time distinct roles for dTau in adult mushroom body (MB)-dependent neuroplasticity as its down- regulation within ␣ЈЈneurons impairs habituation. In accord with its negative regulation of translation, dTau loss specifically enhances protein synthesis-dependent long-term memory (PSD-LTM), but not anesthesia-resistant memory. In contrast, elevation of the protein in the MBs yielded premature habituation and depressed PSD-LTM. Therefore, tau loss in Drosophila dynamically alters brain cytoskel- etal dynamics and profoundly affects neuronal proteostasis and plasticity. Key words: Drosophila; habituation; memory; proteome; tau Significance Statement We demonstrate that despite modest sequence divergence, the Drosophila tau (dTau) is a true vertebrate tau ortholog as it interacts with the neuronal microtubule and actin cytoskeleton. -
An Aquaporin-4/Transient Receptor Potential Vanilloid 4 (AQP4/TRPV4) Complex Is Essential for Cell-Volume Control in Astrocytes
An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes Valentina Benfenatia,1, Marco Caprinib,1, Melania Doviziob, Maria N. Mylonakouc, Stefano Ferronib, Ole P. Ottersenc, and Mahmood Amiry-Moghaddamc,2 aInstitute for Nanostructured Materials, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; bDepartment of Human and General Physiology, University of Bologna, 40127 Bologna, Italy; and cCenter for Molecular Biology and Neuroscience and Department of Anatomy, University of Oslo, 0317 Oslo, Norway Edited* by Peter Agre, Johns Hopkins Malaria Research Institute, Baltimore, MD, and approved December 27, 2010 (received for review September 1, 2010) Regulatory volume decrease (RVD) is a key mechanism for volume channels (VRAC). Osmolyte efflux through VRAC is thought to control that serves to prevent detrimental swelling in response to provide the driving force for water exit (6, 7). The factors that hypo-osmotic stress. The molecular basis of RVD is not understood. initiate RVD have received comparatively little attention. Here Here we show that a complex containing aquaporin-4 (AQP4) and we test our hypothesis that activation of astroglial RVD depends transient receptor potential vanilloid 4 (TRPV4) is essential for RVD on a molecular interaction between AQP4 and TRPV4. fi in astrocytes. Astrocytes from AQP4-KO mice and astrocytes treated Our hypothesis rests on our recent nding that TRPV4 is with TRPV4 siRNA fail to respond to hypotonic stress by increased strongly expressed in astrocytic endfeet membranes abutting the – intracellular Ca2+ and RVD. Coimmunoprecipitation and immunohis- pia (including the extension of the pia that lines the Virchow tochemistry analyses show that AQP4 and TRPV4 interact and coloc- Robin spaces) and in endfeet underlying ependyma of the ven- alize.