Vinyl Chloride Production Senior Design Presentation
Total Page:16
File Type:pdf, Size:1020Kb
Vinyl Chloride Production Senior Design Presentation Group 10 Jeremy Dry Israel Osisanya Bryce Lawson Deepa Patel Phuong Le Anecia Shelton Project Purpose To design an environmentally safe vinyl chloride production plant. Questions: What is Vinyl Chloride? How its being produced? How much does it cost to be environmentally friendly? Vinyl Chloride 99% of VCM is used to manufacture polyvinyl chloride (PVC). PVC consumption is second to low density polyethylene. VCM production results in a number of unwanted by-products. VCM Plant Emissions in the United States 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 lb/lb VCM product 0.0002 0.0001 0 123456789 1 Formosa-LA 4 Georgia Gulf-LA 7 Borden-LA 2 Oxyvinyls-D-TX 5 Westlake Monomers-KY 8 Dow-LA 3 Oxyvinyls-L-TX 6 Formosa-TX 9 Dow-TX Manufacturing Methods Vinyl Chloride from Acetylene Vinyl Chloride from Ethane Vinyl Chloride from Ethylene (Direct Route) Vinyl Chloride from Ethylene (EDC) Balanced Process for Vinyl Chloride Production Direct chlorination CH2CH2 + Cl2 → ClCH2CH2Cl (EDC) Oxychlorination CH2CH2 + 2 HCl + ½ O2 → EDC+ H2O EDC pyrolysis 2 EDC → 2 CH2CHCl (VCM) + 2 HCl Overall reaction 2 CH2CH2 + Cl2 + ½ O2 → 2 CH2CHCl + H2O •No generation of HCl •95% of the world’s VCM is produced utilizing the balanced process Balanced Process for Vinyl Chloride Production HCl recycle Air or O2 Light ends Oxy- chlorination VCM Ethylene EDC EDC purification purification pyrolysis VCM EDC recycle Direct Cl chlorination 2 Heavy ends Direct Chlorination and Oxychlorination P&ID CAUSTIC SCRUBBERS OXYDC REACTOR REACTOR Vinyl Chloride Plant Reactor Design •Theoretical reactor design equations •Literature kinetic data used to calculated rate constants •Numerical Integration used to calculated specified parameters Reactor Design dF πd 2 k = w t dz k 4 Fk = molar flow rate z = tube length dt = tube diameter wk = νiri ri = kf[Ck]-kr[Ck] Oxychlorination Chemistry Reaction Stoichiometry Set DCE R-1 C H + 2CuCl → C H Cl + 2CuCl formation 2 4 2 2 4 2 TCE R-2 C H + 3CuCl → C H Cl + 3CuCl +0.5H formation 2 4 2 2 4 3 2 C H R-3 2 4 C H + 3O → 2CO + 2H O combustion 2 4 2 2 2 CuCl R-4 2CuCl + 0.5O → CuO-CuCl → CuO + CuCl oxidation 2 2 2 CuCl R-5 2 CuO + 2HCl → CuCl + H O regeneration 2 2 •Plus nine other main by product formation reactions •Excel Reactor Model of Oxychlorination Oxychlorination Reactor Results Oxy Reactor Effluent Flow Rates (lb-mol/hr) EDC 1341 Chloral 0.25 Water 1341 CCl4 1.25 TEC 1.26 Methyl Chloride 0.12 CO2 140 Chloroform 0.11 Ethylene 5.5 Chloroethane 0.11 Oxygen 2.76 Chloroprene 0.10 HCl 0.015 Vinyl Acetylene 0.09 Acetylene 0.13 Dichloromethane 0.10 Oxychlorination Reactor Parameters Reactor Temperature (oC) 305 Reactor Pressure (psig) 58 Reactor Volume (ft3) 461 Tube Diameter (in) 2 Tube Length (ft) 1320 Residence Time (hr) 0.05 DC Reactor Modeling Results DC Reactor Kinetic Results DC Reactor Parameters Reactor Temperature (oC) 120 Literature Modeling Reactor Pressure (psig) 15 Results Values Reactor Volume (ft3) 90 Conversion 99.93% 99.94% of ethylene Tube Diameter (in) 2 Selectivity Tube Length (ft) 115 99.8% 99.4% to EDC Residence Time (hr) 0.018 EDC Purification P&ID WATERLIGHTSHEAVIES WASH COLUMN COLUMN EDC Pyrolysis P&ID CRACKING FURNACE FURNACE FEED FLASH EFFLUENT QUENCH SECTION EDC Pyrolysis Reactor Modeling Results •Conversion of EDC per pass is maintained at 50-55% •Increasing cracking severity beyond this level results in insignificant increase in conversion and a decrease in selectivity to VCM. •Conversion can be increased by the addition of CCl4 •Modeling results produced conversion equal to 60% •Major by products of EDC pyrolysis: Acetylene, benzene, 1-3 butadiene, vinyl acetylene, chloroprene. VCM Purification P&ID HClVCM COLUMN COLUMN FEED FLASH Pro II Simulation PFD S5 S4 OP1 F1 S34 1 M1 S36 1 S41 2 3 2 1 3 1 4 4 S59 S62 2 5 5 6 3 4 2 S60 6 7 5 8 S52 6 7 3 S1 7 9 8 S25 4 S29 10 9 S53 10 S33 8 11 11 5 S11 S6 12 12 SC1 S54 S55 9 13 13 6 S39 14 S12 14 S51 15 10 16 7 15 S49 E4 F7 17 S28 16 18 8 11 R1 S45 S56 17 S43 F6 19 20 9 18 12 E3 21 S27 S30 19 22 10 20 23 13 24 11 F3 21 25 M5 S3 22 26 S31 14 S48 27 12 M6 23 28 15 24 29 13 S42 M8 30 25 F5 31 S58 14 16 26 32 S26 S38 33 15 27 34 28 E2 35 T1 17 F4 16 29 S63 36 S50 37 S22 S35 38 17 39 T2 30 S64 40 18 S24 41 S40 19 M7 S2 E1 T3 42 S44 F2 T4 20 SC2 S23 SP3 S61 S57 Liquid Liquid Heat Integration Pinch Design Method Optimization method that reduces energy cost Utilizes process to process heat transfer Optimal pinch temperature→ 316oF Heat Integration Grand Composite Curve 1000 900 QHmin 800 700 600 500 Temperature (F) 400 Pocket of Heat Recovery 300 200 100 QCmin 0 0 50 100 150 200 250 300 350 Duty (MMBtu/hr) Heat Integration Results Hot Utility 401→ 308 MM Btu/hr Cold Utility 251→ 158 MM Btu/hr Energy Reduction Results in a savings of $2.4 Million/year! Waste Stream Treatment Location of Waste Streams EDC Purification/Pyrolysis Oxychlorination Reaction Section Direct Chloriantion Caustic Scrubber Contents of Waste Liquid Waste Vapor Waste Ethylene Ethylene EDC EDC Carbon Tetrachloride C2HCl3 CHCl VCM 3 Dichloromethane C2HCl3 C2H2 VCM C2HCl3O Vinyl Acetylene Chloroethane Types of Waste Treatment Condenser Catalytic Incinerator Absorber/Scrubber Thermal Incinerator Flare Waste Treatment Selected Multiple Treatment Process Selected Consists of thermal incineration, absorption column, and caustic scrubbing unit Treatment PFD CO2, NOx Water NaOH Cl , H O, HCl Vapor 2 2 g n n CO , NO o 2 x c i i Waste i t t b p s b r u u o a r Incinerator s CO2, NOx c C b S A Liquid Cl2 Waste Water + HCl Water + NaCl + NaOCl Products of Waste Treatment Water and HCl (solution) Water, NaCl, and Sodium Hypochlorite (solution) Carbon Dioxide and Nitrous Oxides Incineration Unit Design Auxiliary Fuel Flowrate Needed (Qf) Qf = Qw (X/Y) where, X = 1.1Cpo(Tc –Tr) – Cpi(Ti –Tr) – hw Y = hf –1.1Cpo(Tc-Tr) Qf = 331 lb/hr Absorption Column Design Amount of Solvent (Water) L = G*(Yi –Yo)/(Xo –Xi) L = 154,000 lbs/hr Column Diameter (Dt) 4VM v DT = fU f π (1− Ad / A)ρv Dt = 5.7 ft Absorption Column Design Cont’d Number of Theoretical Stages (NOG) ln{[(A −1) / A][(Y − KX ) /(Y − KX )]+ (1/ A)} N = i i O i OG (A −1) / A NOG = 20 Overall Height of a Transfer Unit (HOG) HOG = G/KyaS HOG = .75 Absorption Column Design Cont’d Packing Height Hpack = NOG*(HOG) Hpack = 15 ft Caustic Scrubbing Design Design L = 45,000 lbs/hr DT = 4.5 ft NOG = 12 HOG = .83 Hpack = 10 ft Waste Water Treatment Waste Water Streams DC Caustic Scrubber Water Wash Drum (L/hr) (L/hr) Water 280 41,000 NaCl 48 0 HCl - 200 Chloral - 26 EDC - 680 CCl4 - 180 TCE - 170 Limits and Treatment Options EPA Limit (mg/L) Treatment Options HCl 5 –GAC Chloral 1 –Incinerator w/Afterburner –GAC EDC .005 -GAC –Boiling CCl4 .005 -GAC –Fluidized Bed Incineration TCE .005 -Incineration -GAC Granular Activated Carbon EPA Recommended Control Technology Ability to remove > 99% of contaminants Simple design and operation No hazardous waste byproducts Ability to operate at low temperatures and pressures GAC Operation Makeup Carbon In Effluent Water Flow Carbon Column Carbon Movement Influent Column Specifications Carbon Mass 21000 lb Adsorber Volume 170 ft3 Adsorber Area 36 ft2 Velocity 7 ft/min Contact Time 27 min Equilibrium Saturation 19 days Carbon Regeneration Carbon In Gas Out Rabble Arm 200-300oF 300-450oF o 400-1000 F Rabble Teeth 1000-1600oF 1600-1800oF 1600-1800oF Carbon Out HAZOP Studies- Safety Concern Purpose: Reduce risk at workplace Identify risks, prevent and reduce impact Subdivide into small sections Deviations, Causes, Consequences, Safe Guard and Actions PFTR Reactor Plant Location Location Factors Raw Materials Wages Distance Utilities Abundance Land Cost Total Tax Corporate Income Tax Taft, LA Sales Tax Property Tax Corpus Christi, TX Factor Rating Maximization Factor Weight % LA TX Raw Material Distance 30 3 miles 17 miles Abundance 25 4 2 Total Tax 20 32% 40% Wages 12 0.95 1.03 Utilities 8 $2.7/MMBtu $2.5/MMBtu Land Cost 5 $1270/acre $640/acre Factor Rating Maximization Weight % x Value % = Factor Rating Taft, LA 0.64 Corpus Christi, TX 0.96 Plant Capacity Forecasting Economic Analysis Economic Analysis Economic Analysis 10.5 billion lb/yr 4.09 billion lb/yr 6.44 billion lb/yr Risk & Probability Analysis Decision Forecasting Prices of Chlorine vs. Year 220 Find Mean Value & Std. Dev Apply to Monte Carlo Simulation 200 180 y = 2.112x - 4017.7 R2 = 0.9548 160 Prices ofPrices Chlorine ($/ton) 140 1975 1980 1985 1990 1995 2000 2005 Year Forecasting Year Ethylene Chlorine Oxygen VCM ($/ton) ($/ton) ($/ft3) ($/ton) 2004 492.5 212.2 0.001445 499.2 2005 499.4 214.1 0.001436 506.2 2006 506.2 216.1 0.001427 513.2 2007 513.1 218.0 0.001418 520.2 2008 519.9 219.9 0.001409 527.2 2009 526.7 221.8 0.001400 529.2 2010 533.6 223.8 0.001391 535.2 2011 540.4 225.7 0.001382 543.21 Std.