Saskatchewan's Natural Capital in a Changing Climate

Total Page:16

File Type:pdf, Size:1020Kb

Saskatchewan's Natural Capital in a Changing Climate Saskatchewan’s Natural Capital in a Changing Climate: An Assessment of Impacts and Adaptation PARC PARAIRIE DAPTATIONRC ESEARCH OLLABORATIVE Lead Author: Dave Sauchyn Contributing Authors: Elaine Barrow, X. Fang, Norm Henderson, Mark Johnston, John Pomeroy, Jeff Thorpe, Elaine Wheaton, B. Williams Saskatchewan’s Natural Capital in a Changing Climate: An Assessment of Impacts and Adaptation Lead Author: Dave Sauchyn1 Contributing Authors: Elaine Barrow2, X. Fang3, Norm Henderson1, Mark Johnston4, John Pomeroy3, Jeff Thorpe4, Elaine Wheaton4, B. Williams3 1 Prairie Adaptation Research Collaborative 2 Climate Research Services, Regina 3 University of Saskatchewan 4 Saskatchewan Research Council This document is available for download from the PARC website (www.parc.ca). PARC acknowledges the funding support of Saskatchewan Environment April 2009 Citation: Sauchyn, Dave; Barrow, Elaine; Fang, X., Henderson, Norm; Johnston, Mark; Pomeroy, John; Thorpe, Jeff; Wheaton, Elaine; and Williams, B. 2009. Saskatchewan’s Natural Capital in a Changing Climate: An Assessment Of Impacts And Adaptation. Report to Saskatchewan Ministry of Environment from the Prairie Adaptation Research Collaborative, 162 pp. CONTENTS Executive Summary........................................................................................................................ 8 Introduction................................................................................................................................... 13 Past Climate and Recent Trends ................................................................................................... 14 Saskatchewan’s Baseline Climate............................................................................................. 14 Recent Climate Trends.............................................................................................................. 18 Past Climate............................................................................................................................... 20 Scenarios of the Future Climate.................................................................................................... 23 Introduction ............................................................................................................................... 23 Climate Change Scenarios ........................................................................................................ 24 Climate Scenarios...................................................................................................................... 28 Water Resources ........................................................................................................................... 41 Introduction ............................................................................................................................... 41 Review of Saskatchewan Hydrology and Water Resource Characteristics .............................. 42 Overview............................................................................................................................... 42 Prairie hydrological cycle ..................................................................................................... 42 Prairie runoff generation....................................................................................................... 44 Saskatchewan rivers and their flows..................................................................................... 46 Current water resource management in Saskatchewan......................................................... 48 Climate Change for Saskatchewan Water Resources ............................................................... 50 Water Resources under Climate Change for Saskatchewan ..................................................... 52 South Saskatchewan River Basin study and subsequent analysis ........................................ 52 Representative prairie basin analysis.................................................................................... 55 Options for Adaptation of Future Water Resources Management Practises, Policies and Infrastructure ............................................................................................................................. 59 Adaptation for South Saskatchewan River water resources ................................................. 59 Adaptation for Saskatchewan prairie water resources.......................................................... 60 Conclusions ............................................................................................................................... 62 Ecosystems.................................................................................................................................... 64 Introduction ............................................................................................................................... 64 Biodiversity and Productivity.................................................................................................... 64 Vegetation Zone Response........................................................................................................ 66 Changes in the Timing of Biological Events ............................................................................ 72 Wildlife...................................................................................................................................... 72 Adaptation ................................................................................................................................. 73 Conclusions ............................................................................................................................... 76 Soil Landscapes ............................................................................................................................ 77 Unmanaged Soil Landscapes .................................................................................................... 77 Agricultural Landscapes............................................................................................................ 78 Adaptation to Minimize Climate Impacts on Soil Landscapes................................................. 79 Agriculture .................................................................................................................................... 81 Highlights.................................................................................................................................. 81 Introduction and Background.................................................................................................... 82 1 Current Agro-Climatic Changes and Impacts ........................................................................... 83 Greater thermal resources ..................................................................................................... 85 Ups and downs of water supplies.......................................................................................... 85 Advantages and disadvantages ............................................................................................. 85 Past and Present Adaptation...................................................................................................... 86 Future Agro-Climatic Scenarios................................................................................................ 87 Future Climate Change Impacts and Adaptations..................................................................... 93 Changes in crop growth and production ............................................................................... 93 Pulse crop production, future climates and adaptation: A case study.................................. 99 Adaptation........................................................................................................................... 101 Extreme Weather and Climate Events: Droughts and Floods................................................. 102 Droughts.............................................................................................................................. 103 Changes in Land Suitability and Northward Shifts................................................................. 104 Livestock Production, Management and Future Climates ...................................................... 105 Insects, Diseases, and other Pests............................................................................................ 106 More about Future Adaptation ................................................................................................ 108 Information and awareness ................................................................................................. 110 Irrigation ............................................................................................................................. 111 Research ............................................................................................................................. 111 Policy Implications.................................................................................................................. 111 Conclusion............................................................................................................................... 113 Forestry ....................................................................................................................................... 114 Introduction ............................................................................................................................
Recommended publications
  • Future Possible Dry and Wet Extremes in Saskatchewan, Canada
    !"#"$%&'())*+,%&-$.&/01&2%#& 34#$%5%)&*0&6/)7/#89%:/0;& </0/1/&& '$%=/$%1&>($&#9%&2/#%$&6%8"$*#.&?@%08.;&6/)7/#89%:/0& 3&29%/#(0;&A&A(0)/,;&B&2*##$(87&&CDEF&& 6G<&'"+&H&EFIJCKE3EF& & Future Possible Dry and Wet Extremes in Saskatchewan, Canada Prepared for the Water Security Agency, Saskatchewan E Wheaton Adjunct Professor, University of Saskatchewan and Emeritus Researcher, Saskatchewan Research Council Box 4061 Saskatoon, SK, 306 371 1205 B Bonsal Research Scientist, Environment Canada Adjunct Professor, University of Saskatchewan Saskatoon, SK V Wittrock Research Scientist, Saskatchewan Research Council Saskatoon, SK November 2013 2 L/+,%&(>&<(0#%0#)& !"##$%&' (! )*+%,-".+),*/',012.+)32'$*-'#2+4,-!' 5! !"#$%&'($)*+,-*.&/-0*12$+* 3! 4$&56-7*8'9$*:$2'6-)7*+,-*;$)$+2%5*<2+9$=62>* ?! .6)#$+2'27+%2#2!',8'+42')*!+%"#2*+$6'%2.,%-' 9! @26/A5&*B')&620*!($2('$=* C! DE&2$9$*:2$%'F'&+&'6,*D($,&)*!($2('$=* G! 8"+"%2':,!!)062'-%,";4+!' <=! ./99+20*6H*:26"+"I$*+,-*J62)&K%+)$*@26/A5&*.%$,+2'6)* LG! 8"+"%2':,!!)062':%2.):)+$+),*'27+%2#2!' =<! M,&26-/%&'6,*+,-*!"#$%&'($* NL! ;$+)6,)*H62*O5+,A$)*',*&5$*B0-26I6A'%+I*O0%I$* NL! O5+,A$)*',*<2$P/$,%07*M,&$,)'&0*+,-*80F$*6H*:2$%'F'&+&'6,*DE&2$9$)* NN! :26#$%&'6,)*6H*DE&2$9$*:2$%'F'&+&'6,*H62*&5$*O+,+-'+,*:2+'2'$)* NQ! D)&'9+&$)*6H*4+E'9/9*:2$%'F'&+&'6,* NR! ./99+20*6H*:6))'"I$*+,-*J62)&KO+)$*</&/2$*.%$,+2'6)*6H*DE&2$9$*:2$%'F'&+&'6,* N3! "#$%&%'(!)*+*#(!,-+#(.(!"#(/010+&+0$2!3/(2&#0$4! 56! 7$#4+89&4(!,-+#(.(!)*+*#(!"#(/010+&+0$2!3/(2&#0$4! 56! .,*8)-2*.2')*'8"+"%2':%,12.+),*!' =9! -)!."!!),*'$*-'.,*.6"!),*!' =>! $.?*,@62-;2#2*+!' AB! %282%2*.2!' A<! 3 6MNN?GO& Droughts and extreme precipitation are extreme climate events and among the most costly and disruptive environmental hazards.
    [Show full text]
  • Adapting Infrastructure to Climate Change in Canada's
    Infrastructure Canada Part of the Transport, Infrastructure and Communities Portfolio ADAPTING INFRASTRUCTURE TO CLIMATE CHANGE IN CANADA’S CITIES AND COMMUNITIES A Literature Review Research & Analysis Division Infrastructure Canada December 2006 Table of Contents Section 1: Introduction..................................................................................................... 1 Context and overview of the report.............................................................................. 3 Section 2: Adaptation Processes .................................................................................... 5 Section 3: Adaptation Responses ................................................................................... 7 3.1 Literature by Type of Infrastructure........................................................................ 8 3.1.1 Water Supply and Wastewater Infrastructure................................................. 8 3.1.2 Transportation Infrastructure........................................................................ 11 3.2 Regionally Specific Literature .............................................................................. 12 3.3 Literature on Climate Change Adaptation for Cities and Communities................ 15 3.4 Literature Related to Engineering Needs............................................................. 18 Section 4: Conclusion.................................................................................................... 20 Adapting Infrastructure to Climate Change in Canada’s
    [Show full text]
  • Decolonizing Climate Policy in Canada Phase 1
    March 2021 Indigenous Climate Action Decolonizing Climate Policy in Canada Report from Phase One Table of Contents About Indigenous Climate Action ..................................................................................................................................... 3 Acknowledgments ................................................................................................................................................................. 4 Executive Summary .............................................................................................................................................................. 5 1. Introduction ........................................................................................................................................................................ 8 1.1 The Methods we Used for Phase 1.........................................................................................................................10 1.2 What we Found ...........................................................................................................................................................11 2. Overview of Climate Policy and Plans in Canada ...................................................................................................12 2.1 The Pan-Canadian Framework (PCF) ....................................................................................................................12 2.2 A Healthy Environment, A Healthy Economy (HEHE) .......................................................................................12
    [Show full text]
  • Carbon Pricing, Fairness, and Fiscal Federalism: a Cost-Sharing Proposal for Canada
    Queen’s Policy Review Volume 2, No. 2 (Fall 2011) Carbon Pricing, Fairness, and Fiscal Federalism: A Cost-Sharing Proposal for Canada Monica Tang Carleton University, Freie Universität Berlin ABSTRACT Carbon pricing has been proposed as a mechanism to reduce carbon emissions in the efforts to mitigate the impacts of climate change. However, the potentially uneven distribution of costs between provinces and regions across Canada has stalled progress on the issue. This paper examines the possibility of implementing cost-sharing arrangements and revenue recycling within the Canadian intergovernmental context to address issues of fairness and fiscal capacity and recommends the coupling of ecological tax reforms with adjustments in intergovernmental transfers. Introduction The setting is a First Ministers Conference, where the Prime Minister and provincial and territorial ministers have gathered to discuss what Canada’s approach should be for reducing carbon and other greenhouse gas emissions in order to mitigate and adapt to the effects of global climate change. Similar to other intergovernmental discussions on issues such as healthcare or education, the questions of fiscal capacity, distribution, and fairness will likely arise. There may be heated debate about which level of government should be responsible for service provision. There may be pleas for special accommodation or exemption for particular provinces. Past disagreements may be revisited about real or perceived unfair treatment of provinces in previous First Ministers Conferences. 17 Queen’s Policy Review Volume 2, No. 2 (Fall 2011) This scenario, while fictional, is certainly plausible. The challenges with addressing climate change on a national level arise from differing provincial economies, emissions profiles, and fiscal capacities.
    [Show full text]
  • Calgary ALBERTA
    of Canada Calgary ALBERTA Calgary and Climate Change The climate determines almost everything about how we design, build, and live in our cities. As the climate changes, the safety and High-Carbon prosperity of our cities is put at risk. Climate change is a Climate Change Projections* challenge that requires us to work together, locally, nationally, and globally. With technical know-how, political will, targeted 1976-2005 2051-2080 investments, and collective commitment, we can mitigate the Change Mean Low Mean High severity of climate change and build resilience to its impacts. Typical Climate Change and Health hottest 31.6 °C 33.0 °C 36.6 °C 40.1 °C High temperatures in urban centres can be hazardous, especially summer day for the elderly, the chronically ill, and those without air conditioning. High and prolonged heat can also impact air Typical quality, facilitate the spread of harmful diseases, inhibit outdoor coldest -33.2 °C -31.7 °C -26.0 °C -19.5 °C winter day activities, and cause stress and anxiety. We can adapt with measures such as shaded areas, green roofs, and supports for those who need help during heat waves. Number of +30 °C days 5 11 32 55 per year Climate Change and Extreme Weather A warmer climate may increase the chance of more extreme weather, including high winds, flash floods, hail, lightning, Spring 103 mm 89 mm 129 mm 199 mm tornadoes, drought, and wildfires. Cities must improve their precipitation planning and engineering, emergency preparedness, and water management to cultivate resilience. Summer 201 mm 97 mm 202 mm 333 mm Climate Change and Infrastructure precipitation Climate change may threaten the integrity of infrastructure such as roads, bridges, water supply, and telecommunications, most of Number of which has not been built to withstand future extremes.
    [Show full text]
  • CLEAN GROWTH and CLIMATE CHANGE: HOW CANADA CAN LEAD INTERNATIONALLY Report of the Standing Committee on Environment and Sustainable Development
    CLEAN GROWTH AND CLIMATE CHANGE: HOW CANADA CAN LEAD INTERNATIONALLY Report of the Standing Committee on Environment and Sustainable Development John Aldag, Chair APRIL 2019 42nd PARLIAMENT, 1st SESSION Published under the authority of the Speaker of the House of Commons SPEAKER’S PERMISSION The proceedings of the House of Commons and its Committees are hereby made available to provide greater public access. The parliamentary privilege of the House of Commons to control the publication and broadcast of the proceedings of the House of Commons and its Committees is nonetheless reserved. All copyrights therein are also reserved. Reproduction of the proceedings of the House of Commons and its Committees, in whole or in part and in any medium, is hereby permitted provided that the reproduction is accurate and is not presented as official. This permission does not extend to reproduction, distribution or use for commercial purpose of financial gain. Reproduction or use outside this permission or without authorization may be treated as copyright infringement in accordance with the Copyright Act. Authorization may be obtained on written application to the Office of the Speaker of the House of Commons. Reproduction in accordance with this permission does not constitute publication under the authority of the House of Commons. The absolute privilege that applies to the proceedings of the House of Commons does not extend to these permitted reproductions. Where a reproduction includes briefs to a Standing Committee of the House of Commons, authorization for reproduction may be required from the authors in accordance with the Copyright Act. Nothing in this permission abrogates or derogates from the privileges, powers, immunities and rights of the House of Commons and its Committees.
    [Show full text]
  • An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies
    sustainability Review An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies Ahmad Zeeshan Bhatti 1,* , Aitazaz Ahsan Farooque 1,2, Nicholas Krouglicof 1, Qing Li 3, Wayne Peters 1, Farhat Abbas 2 and Bishnu Acharya 4 1 Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; [email protected] (A.A.F.); [email protected] (N.K.); [email protected] (W.P.) 2 School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; [email protected] 3 Department of Environment, Energy, and Climate Action, Government of Prince Edward Island, Charlottetown, PE C1A 7N8, Canada; [email protected] 4 Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-(902)-566-6084 Abstract: Climate change is impacting different parts of Canada in a diverse manner. Impacts on temperature, precipitation, and stream flows have been reviewed and discussed region and province- wise. The average warming in Canada was 1.6 ◦C during the 20th century, which is 0.6 ◦C above the global average. Spatially, southern and western parts got warmer than others, and temporally winters got warmer than summers. Explicit implications include loss of Arctic ice @ 12.8% per decade, retreat of British Columbian glaciers @ 40–70 giga-tons/year, and sea level rise of 32 cm/20th century Citation: Bhatti, A.Z.; Farooque, on the east coast, etc. The average precipitation increased since 1950s from under 500 to around A.A.; Krouglicof, N.; Li, Q.; Peters, W.; 600 mm/year, with up to a 10% reduction in Prairies and up to a 35% increase in northern and Abbas, F.; Acharya, B.
    [Show full text]
  • Climate Change and Alberta's Forests
    Climate Change and Alberta’s Forests An Information and Discussion Paper of Predicted Implications H. F. Cerezke Forest Health Section, Forestry Division Alberta Sustainable Resource Development January 2009 FORWARD AND ACKNOWLEDGEMENT The growing awareness of global climate changes and the associated increasing concentrations of atmospheric greenhouse gas emissions have raised concerns about the future welfare of Alberta’s forests and the forest land base. Forests are shaped by climate, in that climate determines what will grow, where it will grow and how well it will grow. Climate changes have been occurring, and further changes are predicted to continue to occur during future decades. As a consequence, global temperatures are rising and precipitation regimes are changing. These factors have the potential to dramatically affect forests province-wide in their distribution, productivity, function, composition, values and health. Implicit in these projections is the need to maintain long-term sustainable management of the forests and to maintain forest ecosystems in a healthy and resilient state. Significant challenges accompanying climate change are the many complex biological interactions associated with forest ecosystems and disturbances, among which are increased forest fire risks and predicted increased insect and disease outbreaks. These challenges will likely be significant and integral in the development of new forest adaptation and mitigation strategies in the future decades. An important function of this report and its main objective are to collate and summarize information on potential climate change effects on Alberta’s forests to help raise awareness of predicted impacts. The initiation of this project is credited to Hideji Ono, former Senior Manager of the Forest Health Section of Alberta Sustainable Resource Development, who foresaw the need to collate a broad spectrum of potential impacts of climate change on provincial forests and forest ecosystems as a framework for interpreting the many forest health related issues.
    [Show full text]
  • Oil Sands Development and Climate Change: Implications for Canadians
    Resource Development FACT SHEETin the North IMPACTS OF OIL SANDS DEVELOPMENT & CLIMATE CHANGE IN CANADA Oil Sands Development and Climate Change: Implications for Canadians The science of climate In 2005, the National Science Academies change leaves little of all G8 countries, China and Brazil stated: doubt that greenhouse gas pollution must “The scientific understanding of climate change be reduced to is now sufficiently clear to justify nations taking prompt action. It is vital that all nations identify prevent dangerous cost-effective steps that they can take now to climate change. contribute to substantial and long-term reduction in net global greenhouse gas emissions.” 1 Unless this pollution is reduced, the climate change impacts that Canadians are already experiencing, such as the mountain pine beetle epidemic in British Columbia, will only get worse. Growing climate change impacts on our forests, wildlife and water will also affect our economy and communities. Fortunately, we can take action to reduce the impacts of climate change. Oil Sands Development Contributes to Climate Change Oil and gas development is a major source of greenhouse gas pollution. The large-scale development of Alberta’s oil sands is the single L largest contributor to greenhouse The large-scale development of Alberta’s oil sands is the single largest contributor to greenhouse gas pollution growth in Canada. CREDIT: DAVID DODGE, THE PEMBINA INSTITUTE gas pollution growth in Canada. TOP PHOTO: Oil sands production could almost triple by 2015. CREDIT: DAVID DODGE 1 The Royal Society. 2005. Joint science academies’ statement: Global response to climate change; http://www.royalsoc.ac.uk/document.asp?id=3222 Oil Sands Development Contributes to Climate Change 90 Producing a barrel a 85.5 barrel of oil from the 80 oil sands generates approximately three 70 times more greenhouse gas pollution than a 60 barrel of conventional 2 crude oil (Figure 1).
    [Show full text]
  • Climate Change White Paper Table of Contents
    CLIMATE CHANGE WHITE PAPER TABLE OF CONTENTS Executive Summary .......................................................................................................................... 4 Section One: The Problem Introduction ................................................................................................................................8 The Vancouver Declaration .........................................................................................................8 Ten Percent of Two Percent ...................................................................................................... 10 Saskatchewan’s Existing Contributions To Global GHG Reductions .......................................... 12 Looking Beyond Our Borders: The Other 98 Percent ................................................................ 15 Section Two: A Call For Meaningful Action Recommendation 1: Refocus the Conversation ........................................................................19 Recommendation 2: An Emphasis on Innovation and Technology ........................................... 23 Recommendation 3: The Case Against a Carbon Tax ................................................................ 30 Recommendation 4: The Case Against Cap and Trade .............................................................. 31 Recommendation 5: Carbon Capture and Sequestration ......................................................... 34 Recommendation 6: SaskPower and Renewables ...................................................................
    [Show full text]
  • Adaptation in Alberta
    Climate Change and the Law PART TWO – AN INTRODUCTION TO ADAPTATION IN ALBERTA APRIL 2019 ENVIRONMENTAL LAW CENTRE (ALBERTA) SOCIETY Authored by: Kyra Leuschen Environmental Law Centre (Alberta) Society January 2019 i | Page CLIMATE CHANGE AND THE LAW PART TWO – AN INTRODUCTION TO ADAPTATION IN ALBERTA Library and Archives Canada Cataloguing in Publication Title: Climate change and the law. Names: Container of (work): Kauffman, Rebecca, 1990- Introduction to mitigation in Alberta. | Container of (work): Leuschen, Kyra, 1982- Introduction to adaptation in Alberta. | Environmental Law Centre (Alta.), publisher. Description: Includes bibliographical references. Identifiers: Canadiana 20190088176 | ISBN 9780995304598 (part 2 ; PDF) Subjects: LCSH: Climatic changes—Law and legislation—Alberta. | LCSH: Climatic changes—Alberta. | LCSH: Energy conservation—Alberta. | LCSH: Renewable energy sources—Alberta. Classification: LCC KEA420 .C65 2019 | LCC KF3775.ZA3 C65 2019 kfmod | DDC 344.712304/6—dc23 Environmental Law Centre (Alberta) Society April 2019 ii | Page CLIMATE CHANGE AND THE LAW PART TWO – AN INTRODUCTION TO ADAPTATION IN ALBERTA THE ENVIRONMENTAL LAW CENTRE (ALBERTA) SOCIETY The Environmental Law Centre (ELC) has been seeking strong and effective environmental laws since it was founded in 1982. The ELC is dedicated to providing credible, comprehensive and objective legal information regarding natural resources, energy and environmental law, policy and regulation in Alberta. The ELC’s mission is to educate and champion for strong laws
    [Show full text]
  • Regina SASKATCHEWAN
    of Canada Regina SASKATCHEWAN Regina and Climate Change The climate determines almost everything about how we design, build, and live in our cities. As the climate changes, the safety and High-Carbon prosperity of our cities is put at risk. Climate change is a Climate Change Projections* challenge that requires us to work together, locally, nationally, and globally. With technical know-how, political will, targeted 1976-2005 2051-2080 investments, and collective commitment, we can mitigate the Change Mean Low Mean High severity of climate change and build resilience to its impacts. Typical Climate Change and Health hottest 35.0 °C 36.2 °C 40.1 °C 43.6 °C High temperatures in urban centres can be hazardous, especially summer day for the elderly, the chronically ill, and those without air conditioning. High and prolonged heat can also impact air Typical quality, facilitate the spread of harmful diseases, inhibit outdoor coldest -36.6 °C -34.6 °C -28.9 °C -23.1 °C winter day activities, and cause stress and anxiety. We can adapt with measures such as shaded areas, green roofs, and supports for those who need help during heat waves. Number of +30 °C days 18 27 54 79 per year Climate Change and Extreme Weather A warmer climate may increase the chance of more extreme weather, including high winds, flash floods, hail, lightning, Spring 90 mm 53 mm 109 mm 176 mm tornadoes, drought, and wildfires. Cities must improve their precipitation planning and engineering, emergency preparedness, and water management to cultivate resilience. Summer 174 mm 86 mm 172 mm 285 mm Climate Change and Infrastructure precipitation Climate change may threaten the integrity of infrastructure such as roads, bridges, water supply, and telecommunications, most of Number of which has not been built to withstand future extremes.
    [Show full text]