Article (Published Version)

Total Page:16

File Type:pdf, Size:1020Kb

Article (Published Version) Article Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries THEVENON, Florian, et al. Reference THEVENON, Florian, et al. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Science of the Total Environment, 2011, vol. 412-413, p. 239-247 DOI : 10.1016/j.scitotenv.2011.09.025 Available at: http://archive-ouverte.unige.ch/unige:17728 Disclaimer: layout of this document may differ from the published version. 1 / 1 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Science of the Total Environment 412-413 (2011) 239–247 Contents lists available at SciVerse ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries Florian Thevenon a,⁎, Neil D. Graham a, Massimo Chiaradia b, Philippe Arpagaus a, Walter Wildi a, John Poté a a Institute F.-A. Forel, University of Geneva, Versoix, Switzerland b Department of Mineralogy, University of Geneva, Geneva, Switzerland article info abstract Article history: This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environ- Received 4 July 2011 ments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from Received in revised form 5 September 2011 two deepwater sites show that the heavy metal variations before the industrial period are primarily linked Accepted 7 September 2011 to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters Available online 1 November 2011 into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of high- ly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a Keywords: fi Lake sediments new Pb isotope record of sediments from Lake Lucerne identi es the long-term increasing anthropogenic Trace elements lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Heavy metal pollution Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution Pb isotopes from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High Switzerland increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750–1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations re- main higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (N100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. © 2011 Elsevier B.V. All rights reserved. 1. Introduction et al., 1998; De Vleeschouwer et al., 2007), but major issues remain about the sources of pollutant metals into aquatic environment. Anthropogenic toxic heavy metals that accumulate in the environ- Moreover, some sediment deposits highly contaminated by past ment and in the food chain, are threatening the world's freshwater human activities (e.g., municipal and industrial waste sediment resources used for drinking and recreational purposes (Vörösmarty from wastewater treatment plants (WWTPs)) can present a potential et al., 2010). Lake sediments offer a unique opportunity for recon- health risk to a population through the possible remobilization of structing the heavy metal pollution history of our environment, and pathogens and inorganic pollutants at the sediment-water interface for evaluating the impacts of remediation for natural water quality under the influence of chemical (e.g., changing redox conditions; protection. Indeed, the enrichment of heavy metals in depositional Pearson et al., 2010) or physical (e.g., mass movement event or dam areas such as lacustrine sediments can provide a long-term history flushing; Girardclos et al., 2007; Wildi et al., 2004) processes. of changes in natural and anthropogenic trace element input, and More than the two thirds of the Swiss population live in urban the possibility to evaluate the recent metal contamination in compar- areas, which are mainly located on the Swiss Plateau, extending ison to the natural level (background; Eades et al., 2002). Freshwater from Lake Geneva in the southwest to Lake Constance in the north- lakes not only receive atmospheric (anthropogenic) pollutant emis- east (altitude ranging from about 350 to 550 m a.s.l.) (Fig. 1). Many sions, but also the natural (lithogenic) heavy metals discharged by foreland lakes were formed after the retreat of the ice margin from rivers. In Europe, anthropogenic atmospheric heavy metal source has the Alpine foreland following the Last Glacial Maximum (after ca. dominated over the geogenic source since industrialization (Schotyk 17.5 ka; Ivy-Ochs et al., 2004). Today, Switzerland is the source of many major Europeans rivers, such as the Rhône and the Rhine. In this study, we first investigate the pollutant deposition history from ⁎ Corresponding author. Tel.: +41 22 379 03 15; fax: +41 22 379 03 29. deepwater sites of Lake Geneva (which is fed by the Rhône River; E-mail address: [email protected] (F. Thevenon). Fig. 1). We then consider the contaminated sediments of Vidy Bay 0048-9697/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.scitotenv.2011.09.025 Author's personal copy 240 F. Thevenon et al. / Science of the Total Environment 412-413 (2011) 239–247 Fig. 1. (Top left) Map of Switzerland with the largest Swiss lakes indicated, and the location of the three Swiss lakes mentioned in the text. (Upper right) Bathymetric map of Lake Lucerne showing the location of the city of Lucerne situated on the outflow River Reuss and core 4WS-05 (bathymetric contour interval is 40 m). (Bottom right) Bathymetric map (bathymetric contour interval is 50 m) of Lake Geneva showing the location of the city of Geneva situated on the outflow River Rhône and the studied areas. (Centre) Bathymetric map of Vidy Bay close to the wastewater treatment plant (WWTP) of the city of Lausanne; also showing the location of the cores from the deepest part of Lake Geneva (C2, 304 m) and from Vidy Bay (V1 and V3). of Lake Geneva (Fig. 1), where the treated wastewaters from the Vidy and the spreading of pharmaceutical and hormonal micropollutants treatment plant (WWTP) have been discharged since 1964. This site (Perazzolo et al., 2010) occurred in the sediment. was previously investigated to evaluate the impact of the discharge of Here, we present new lead (Pb) records from Vidy Bay and from municipal and industrial waste sediments from the WWTP. High con- the deepest parts of the Grand Lac (Large Lake; ~300 m) and the centrations of heavy metals (Monna et al., 1999; Loizeau et al., 2004), Petit Lac (Small Lake; ~50 m) (Fig. 1), in order to evaluate i) pre- high microbial activities (Poté et al., 2008; Thevenon et al., 2011a), industrial variations in concentrations of heavy metals in Lake Author's personal copy F. Thevenon et al. / Science of the Total Environment 412-413 (2011) 239–247 241 Geneva, and ii) recent anthropogenic heavy metal emissions in sites Sarner Aa; Fig. 1). Lake Lucerne is monomictic, with one complete with different natural inputs (based on normalization to a conservative, overturn every six years generally preceded by a significant rise of lithogenic element). the hypolimnic temperature. The lake underwent a period of moder- We provide a broader understanding of the sources of heavy ate eutrophication from 1960 to 1979 (Bührer and Ambühl, 2001). metals and evaluate the recent contamination of European lakes, a In 2005, a 163 cm-long core (4WS05, Fig. 1) was collected in major issue for large freshwater lakes such as Geneva and Constance the middle of the Chrüztricher Basin (669.397/209.079) at 110 m (Monna et al., 1999; Bollhöfer et al., 1994; Kober et al., 1999). We water depth. This core has been previously analyzed for combustion compare the Lake Geneva Pb record to that of Lake Lucerne, which residues (Thevenon and Anselmetti, 2007) and trace element concen- was highly impacted by different fossil fuel combustion products tration (Thevenon et al., 2011b). during the late-19th and early-20th centuries (Thevenon and Anselmetti, 2007). A new stable Pb isotope record from this site is 2.2. Sediment dating and trace elements analysis compared to published records from lakes Geneva and Constance, 137 in order to discriminate the anthropogenic sources of heavy metal 2.2.1.
Recommended publications
  • HOBIM Liste OW
    HOBIM: Liste Obwalden Stand 22.04.2016 Anlage Nr Objekt NrAnlagebezeichnung Gemeinde Objektbez Bauwerksart Einstufung Schutzziel Mehrfam.häuser 4417 RE Kägiswil N+R 6060 Sarnen Wohn-,Bürogebäude übl. Ausb. L (lokal) 9 (partiell) 4346 BL Flugplatz 6055 Alpnach Halle 2 Hangars L (lokal) 8 (integral) 4346 BF Flugplatz 6055 Alpnach Bürogebäude Bürobauten L (lokal) 9 (partiell) Lagergebäude 4346 AB Flugplatz 6055 Alpnach Lagerschuppen allgemein L (lokal) 9 (partiell) 4376 EJ - 6074 Giswil Material-Magazin Holz L (lokal) 8 (integral) 4346 BG Flugplatz 6055 Alpnach Funkturm Flugsicherung L (lokal) 9 (partiell) 4346 BM Flugplatz 6055 Alpnach Halle 3 Hangars L (lokal) 8 (integral) Lagergebäude 4340 AT Zeughauskreis 3 6055 Alpnach Korpsmaterialbaracke allgemein L (lokal) 9 (partiell) Massenunterk.M 4346 EN Flugplatz 6055 Alpnach Unterkunftsbaracke ilit.+Zivil R (regional) 9 (partiell) Massenunterk.M 4346 EA Flugplatz 6055 Alpnach Unterkunftsbaracke ilit.+Zivil R (regional) 9 (partiell) Massenunterk.M 4346 EJ Flugplatz 6055 Alpnach Unterkunftsbaracke ilit.+Zivil R (regional) 9 (partiell) Massenunterk.M 4346 EM Flugplatz 6055 Alpnach Unterkunftsbaracke ilit.+Zivil R (regional) 9 (partiell) 4346 AC Flugplatz 6055 Alpnach Hangar 1 Flz-Schuppen R (regional) 8 (integral) Massenunterk.M 4346 EL Flugplatz 6055 Alpnach Unterkunftsbaracke ilit.+Zivil R (regional) 9 (partiell) Massenunterk.M 4346 EQ Flugplatz 6055 Alpnach Unterkunftsbaracke ilit.+Zivil R (regional) 9 (partiell) Lagergebäude 4417 QY Kägiswil N+R 6060 Sarnen Kabelrollenlager allgemein R (regional)
    [Show full text]
  • A Geological Boat Trip on Lake Lucerne
    A geological boat trip on Lake Lucerne Walter Wildi & Jörg Uttinger 2019 h=ps://www.erlebnis-geologie.ch/geoevent/geologische-schiffFahrt-auF-dem-vierwaldstae=ersee-d-e-f/ 1 A geological boat trip on Lake Lucerne Walter Wildi & Jörg Uttinger 2019 https://www.erlebnis-geologie.ch/geoevent/geologische-schifffahrt-auf-dem-vierwaldstaettersee-d-e-f/ Abstract This excursion guide takes you on a steamBoat trip througH a the Oligocene and the Miocene, to the folding of the Jura geological secYon from Lucerne to Flüelen, that means from the mountain range during the Pliocene. edge of the Alps to the base of the so-called "HelveYc Nappes". Molasse sediments composed of erosion products of the rising The introducYon presents the geological history of the Alpine alpine mountains have been deposited in the Alpine foreland from region from the Upper Palaeozoic (aBout 315 million years ago) the Oligocene to Upper Miocene (aBout 34 to 7 Milion years). througH the Mesozoic era and the opening up of the Alpine Sea, Today's topograpHy of the Alps witH sharp mountain peaks and then to the formaYon of the Alps and their glacial erosion during deep valleys is mainly due to the action of glaciers during the last the Pleistocene ice ages. 800,000 years of the ice-ages in the Pleistocene. The Mesozoic (from 252 to 65 million years) was the period of the The cruise starts in Lucerne, on the geological limit between the HelveYc carBonate plaaorm, associated witH a higH gloBal sea Swiss Plateau and the SuBalpine Molasse. Then it leads along the level.
    [Show full text]
  • A Hydrographic Approach to the Alps
    • • 330 A HYDROGRAPHIC APPROACH TO THE ALPS A HYDROGRAPHIC APPROACH TO THE ALPS • • • PART III BY E. CODDINGTON SUB-SYSTEMS OF (ADRIATIC .W. NORTH SEA] BASIC SYSTEM ' • HIS is the only Basic System whose watershed does not penetrate beyond the Alps, so it is immaterial whether it be traced·from W. to E. as [Adriatic .w. North Sea], or from E. toW. as [North Sea . w. Adriatic]. The Basic Watershed, which also answers to the title [Po ~ w. Rhine], is short arid for purposes of practical convenience scarcely requires subdivision, but the distinction between the Aar basin (actually Reuss, and Limmat) and that of the Rhine itself, is of too great significance to be overlooked, to say nothing of the magnitude and importance of the Major Branch System involved. This gives two Basic Sections of very unequal dimensions, but the ., Alps being of natural origin cannot be expected to fall into more or less equal com­ partments. Two rather less unbalanced sections could be obtained by differentiating Ticino.- and Adda-drainage on the Po-side, but this would exhibit both hydrographic and Alpine inferiority. (1) BASIC SECTION SYSTEM (Po .W. AAR]. This System happens to be synonymous with (Po .w. Reuss] and with [Ticino .w. Reuss]. · The Watershed From .Wyttenwasserstock (E) the Basic Watershed runs generally E.N.E. to the Hiihnerstock, Passo Cavanna, Pizzo Luceridro, St. Gotthard Pass, and Pizzo Centrale; thence S.E. to the Giubing and Unteralp Pass, and finally E.N.E., to end in the otherwise not very notable Piz Alv .1 Offshoot in the Po ( Ticino) basin A spur runs W.S.W.
    [Show full text]
  • Report Reference
    Report Excursion géologique en bateau à vapeur sur le Lac des Quatre-Cantons WILDI, Walter, UTTINGER, Joerg & Erlebnis-Geologie Abstract Français: Excursion géologique en bateau à vapeur sur le Lac des Quatre- Cantons Ce guide d’excursion propose un tour en bateau à vapeur sur le Lac des Quatre-Cantons, le long d’une section géologique entre Lucerne et Flüelen, de la bordure des Alpes jusqu’à la base des Nappes helvétiques. L’introduction présente l’histoire géologique du Paléozoïque supérieur (dès env. 315 mio d’années), à travers le Mésozoïque et l’ouverture de la mer alpine, au plissement des Alpes et l’érosion des chaînes de montagnes par les glaciers. Le voyage en bateau commence à Lucerne, à la limite géologique entre la Molasse du Plateau et la Molasse subalpine. Ensuite, elle suit le massif de la Rigi, formé par une écaille de Molasse subalpine inclinée vers le Sud. A Vitznau le bateau traverse la limite du bâti des Nappes helvétiques. Sur le Lac d’Urnen on suit d’abord la Nappe du Drusberg et ses plis spectaculaires, puis la Nappe de l’Axen. Le terminus se situe à Flüelen, dans des paysages plus doux, situés sur les sédiments de la couverture du Massif de l’Aar. Allemand: Geologische [...] Reference WILDI, Walter, UTTINGER, Joerg & Erlebnis-Geologie. Excursion géologique en bateau à vapeur sur le Lac des Quatre-Cantons. Berne : Erlebnis-Geologie, 2019, 23 p. Available at: http://archive-ouverte.unige.ch/unige:121454 Disclaimer: layout of this document may differ from the published version. 1 / 1 A geological boat trip on Lake
    [Show full text]
  • Around the Lake Constance in One Week Arrival
    Around the Lake Constance in one week Individual tour Category: bike tour Duration: 7 days Offer: 2021 Meals: breakfasts Accommodation: hotels and pensions, rooms with bathrooms Difficulty: easy Distance by bike: 230 - 250 km The tour around Lake Constance is one of cycling classics. It is among the biggest lakes of Central Europe, along the Balaton and Lake Geneva. It is located at the border of Switzerland, Germany and Austria. At the same time, it is a very interestingly located one, surrounded by the Alpine mountains, allowing to observe many peaks, and numerous castles if the weather allows. The lake is encircled by a cycling route, making the trip a safe and comfortable one. Due to minor elevations we recommend the tour even for beginners and families with children. Arrival: By plane – the easiest way is coming by plane to Friedrichshafen, Stuttgart or Zurich. Most flights can be booked to Zurich, often at a reasonable price. From there, one should take a train to Constance. Places to see: Constance Over 600 years ago, the ecumenical council ending the Western schism took place in Constande. During the council, pope Martin V was elected, and the Czech reformer Jan Hus was burned at the stake at the same time. The statue of Imperia by Peter Lenk commemorates these events. Erected in 1993, weighing over 18 tons and 9 meters tall is one of the city’s symbols. It resembles a courtesan with her hands risen up, holding two naked men. One of them is wearing a crown and holds a sphere – the symbol of Holy Roman Empire.
    [Show full text]
  • The Periodicity of Phytoplankton in Lake Constance (Bodensee) in Comparison to Other Deep Lakes of Central Europe
    Hydrobiologia 138: 1-7, (1986). 1 © Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe Ulrich Sommer University of Constance, Institute of Limnology, PO. Box 5560, D-7750 Constance, FRG New address: Max Planck Institute of Limnology, PO. Box 165, D-2320 Plon, FRG Keywords: phytoplankton succession, inter-lake comparison, oligotrophic-eutrophic gradient, central Eu- ropean lakes Abstract Phytoplankton periodicity has been fairly regular during the years 1979 to 1982 in Lake Constance. Algal mass growth starts with the vernal onset of stratification; Cryptophyceae and small centric diatoms are the dominant algae of the spring bloom. In June grazing by zooplankton leads to a 'clear-water phase' dominated by Cryptophyceae. Algal summer growth starts under nutrient-saturated conditions with a dominance of Cryptomonas spp. and Pandorinamorum. Depletion of soluble reactive phosphorus is followed by a domi- nance of pennate and filamentous centric diatoms, which are replaced by Ceratium hirundinella when dis- solved silicate becomes depleted. Under calm conditions there is a diverse late-summer plankton dominated by Cyanophyceae and Dinobryon spp.; more turbulent conditions and silicon resupply enable a second sum- mer diatom growth phase in August. The autumnal development leads from a Mougeotia - desmid assem- blage to a diatom plankton in late autumn and winter. Inter-lake comparison of algal seasonality includes in ascending order of P-richness K6nigsee, Attersee, Walensee, Lake Lucerne, Lago Maggiore, Ammersee, Lake Ziirich, Lake Geneva, Lake Constance. The oligo- trophic lakes have one or two annual maxima of biomass; after the vernal maximum there is a slowly develop- ing summer depression and sometimes a second maximum in autumn.
    [Show full text]
  • Subaqueous Morphology of Lake Lucerne (Central Switzerland): Implications for Mass Movements and Glacial History
    Swiss J Geosci (2011) 104:425–443 DOI 10.1007/s00015-011-0083-z Subaqueous morphology of Lake Lucerne (Central Switzerland): implications for mass movements and glacial history Michael Hilbe • Flavio S. Anselmetti • Raymond S. Eilertsen • Louise Hansen • Walter Wildi Received: 1 October 2010 / Accepted: 3 August 2011 / Published online: 25 November 2011 Ó Swiss Geological Society 2011 Abstract Bathymetric data available for Swiss lakes have document mass-movement activity on steep slopes above typically only low to moderate resolution and variable the lake. Six transverse moraines, visible as subaqueous quality, making them insufficient for detailed underwater ridges, as lake-floor lineaments, or only imaged on reflec- geomorphological studies. This article presents results of a tion seismic profiles, indicate a complex glacial-inherited new bathymetric survey in perialpine Lake Lucerne using morphology. As many of the documented features result modern hydrographic equipment. A digital terrain model from potentially catastrophic events, high-resolution (DTM) of the lake floor (raster dataset with 1 m cell size) bathymetry can significantly improve natural hazard covering the Chru¨ztrichter and Vitznau basins documents assessment for lakeshore communities by extending clas- signatures of major Holocene mass movements and relics sical hazard maps to the subaqueous domain. from the glacial history of the lake. Combining the bathymetry data with reflection seismic profiles and an Keywords Swath bathymetry Á Perialpine lakes Á existing event chronology allows investigating the mor- Natural hazards Á Subaqueous moraines Á phology in its geological context. Subaqueous sediment Soft-sediment deformation slide scars with sharp headwalls cover large areas on moderately inclined slopes. The particularly large Weggis slide complex, correlated with an historical earthquake (AD 1 Introduction 1601), features a *9 km long and 4–7 m high headwall and covers an area of several square kilometers.
    [Show full text]
  • Mediators of Synchrony in Phytoplankton Changes Among European Peri-Alpine Lakes
    Freshwater Biology (2005) 50, 1731–1746 doi:10.1111/j.1365-2427.2005.01429.x Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes ORLANE ANNEVILLE,*,† SONJA GAMMETER‡ AND DIETMAR STRAILE† *INRA, Station d’hydrobiologie lacustre, Thonon les Bains, Cedex, France †Limnologisches Institut, Universita¨t Konstanz, Konstanz, Germany ‡Zurich Water Supply, Postfach, Zu¨rich, Switzerland SUMMARY 1. In an attempt to discern long-term regional patterns in phytoplankton community composition we analysed data from five deep peri-alpine lake basins that have been included in long-term monitoring programmes since the beginning of the 1970s. Local management measures have led to synchronous declines in phosphorus concentrations by more than 50% in all four lakes. Their trophic state now ranges from mesotrophic to oligotrophic. 2. No coherence in phytoplankton biomass was observed among lakes, or any significant decrease in response to phosphorus (P)-reduction (oligotrophication), except in Lakes Constance and Walen. 3. Multivariate analyses identified long-term changes in phytoplankton composition, which occurred coherently in all lakes despite the differing absolute phosphorus concentrations. 4. In all lakes, the phytoplankton species benefiting from oligotrophication included mixotrophic species and/or species indicative of oligo-mesotrophic conditions. 5. A major change in community composition occurred in all lakes at the end of the 1980s. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. 6. Our results provide evidence that synchronous long-term changes in geographically separated phytoplankton communities may occur even when overall biomass changes are not synchronous.
    [Show full text]
  • P4.14 Validation of Lake Surface Water Temperatures Derived from Noaa Avhrr and Modis Data
    P4.14 VALIDATION OF LAKE SURFACE WATER TEMPERATURES DERIVED FROM NOAA AVHRR AND MODIS DATA D. Oesch *, A. Hauser and S. Wunderle Remote Sensing Research Group, University of Bern, Switzerland 1. INTRODUCTION* Approximately 4000 HRPT AVHRR data sets from Numerous lakes in the European Alps contain a AVHRR/2 (N12) and AVHRR/3 (N15, N16, and N17) have sufficient large volume and areal extent of water to been read out at the receiving station of the University of influence significantly local weather patterns with their Bern during 2002 and 2003. The level1b data were radi- surface temperature (Livingstone et al., 2001). ometrically corrected and calibrated in physical units, ac- Monitoring of climatological temperature conditions counting for sensor nonlinearity of the AVHRR/2 as sug- and temporal and spatial distribution of the lake gested by Rao et al., 1993. To derive LSWT from lakes surface water temperature (LSWT) can be valuable with a size of a few square kilometers, a georeferencing for many applications (Alsdorf et al., 2003). with sub pixel accuracy is necessary. This was achieved Up to now, there is no area wide consistent through an automated feature matching algorithm. An or- temperature data set for the alpine lakes available. thorectification based on the terrain model GTOPO30 of The in situ measurements at points of opportunity can the imagery is essential in a mountainous area to over- not take into account the high spatial variability of come the displacement introduced by the topography. The water in near shore zones and their limited spatial resulting data set was subset to a latitude – longitude grid coverage is not adequate for resolving the spatial on the WGS84 ellipsoid, covering the alpine region from distribution of temperature in lakes.
    [Show full text]
  • ESPON ACTAREA Swiss Spatial Strategy and Action Areas
    This targeted analysis is conducted within the framework of the ESPON 2020 Cooperation Programme, partly financed by the European Regional Development Fund. The ESPON EGTC is the Single Beneficiary of the ESPON 2020 Cooperation Programme. The Single Operation within the programme is implemented by the ESPON EGTC and co-financed by the European Regional Development Fund, the EU Member States and the Partner States, Iceland, Liechtenstein, Norway and Switzerland. This delivery does not necessarily reflect the opinion of the members of the ESPON 2020 Monitoring Committee. Authors Erik Gløersen, Nathalie Wergles, Clément Corbineau and Sebastian Hans, Spatial Foresight (Luxembourg) Tobias Chilla and Franziska Sielker, Friedrich-Alexander University of Erlangen-Nuremberg (Germany) Jacques Félix Michelet and Lauranne Jacob, University of Geneva, Hub of Environmental Governance and Territorial Development (GEDT) (Switzerland)) Advisory Group Project Support Team: ESPON EGTC: Sandra di Biaggio Acknowledgements The authors would like to thank to Steering group composed of the Swiss Federal Office for Spatial Development (ARE), the German Federal Ministry of Transport and Digital Infrastructure and the International Spatial Development Commission "Bodensee” (Lake Constance) for the stimulating dialogue throughout the duration of the project. Stakeholders of case study areas and survey respondents have also provided precious inputs, without which the present report could not have been produced. Information on ESPON and its projects can be found on www.espon.eu. The web site provides the possibility to download and examine the most recent documents produced by finalised and ongoing ESPON projects. This delivery exists only in an electronic version. © ESPON, 2017 Printing, reproduction or quotation is authorised provided the source is acknowledged and a copy is forwarded to the ESPON EGTC in Luxembourg.
    [Show full text]
  • Gästebroschüre Guest Brochure
    GÄSTEBROSCHÜRE GUEST BROCHURE WINTER 2020/2021 Cover : INHALT TABLE OF CONTENTS Blick vom Bonistock auf Erzegg, Melchsee-Frutt Langlaufloipe im Langis 05 Anreise 35 Entdecken 55 Panoramakarte Getting here Discover Panoramic map 06 Ferienorte 37 Erholen Holiday destinations Relax 09 Top-Events 50 Geniessen Top events Enjoy 10 Erleben 52 ­Information Experience Information WO ? ANREISE GETTING HERE OW ! WILLKOMMEN IM MITTELPUNKT Ferien können Sie überall machen. Im Mittelpunkt stehen Sie aber nur bei uns. Nicht einzig, weil unser Kanton die geografische Mitte der Schweiz bildet, nein: Vor allem weil wir hier in Obwalden Gastfreundschaft als Wert betrachten, nicht als Schlagwort. Sie werden das schnell spüren – in unseren Ferienorten und Wintersportgebieten hat man Zeit für Sie; unsere Unterkünfte werden nicht von Managern geführt, sondern von Menschen. In unseren oft lokal geprägten Restaurants und Hütten empfängt man Sie voller Wärme. Bei Veranstaltungen begegnen wir Ihnen als Freunde, nicht als Fremde und wenn Sie bei uns ein Abenteuer wagen, sind Sie nicht nur in kompetenten, sondern in fürsorglichen Händen. Erfreuen Sie sich Ihres Winters bei uns und achten Sie beim Blättern in Luzern-Interlaken Express / Lungerersee dieser Gästebroschüre besonders auf unsere Geheimtipps – den Kern echter, entspannter Ferien im Mittelpunkt. Obwalden bildet, eingebettet zwischen Lu- Nestling between Lucerne and Interlaken, zern und Interlaken, die geografische Mitte der Obwalden marks the geographical centre Schweiz (Älggialp). Die Ferienregion liegt of Switzerland (Älggialp). This holiday region an der Gotthard-Nord-Süd-Verbindung und is situated on the Gotthard north-south tran- ist vom Flughafen Zürich Kloten mit dem sit route, less than one hour’s drive from WELCOME TO THE HEART OF SWITZERLAND! Auto in weniger als einer Stunde erreichbar.
    [Show full text]
  • Phytoplankton Configuration in Six Deep Lakes in the Peri-Alpine Region: Are the Key Drivers Related to Eutrophication and Climate?
    Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Nicole Gallina, Nico Salmaso, Giuseppe Morabito & Martin Beniston Aquatic Ecology A Multidisciplinary Journal Relating to Processes and Structures at Different Organizational Levels ISSN 1386-2588 Aquat Ecol DOI 10.1007/s10452-013-9433-4 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Aquat Ecol DOI 10.1007/s10452-013-9433-4 Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Nicole Gallina • Nico Salmaso • Giuseppe Morabito • Martin Beniston Received: 26 May 2012 / Accepted: 2 March 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract The aim of this study was to draw a water temperatures, variables that are strongly influ- general picture of the phytoplankton community in enced by climate change and eutrophication. Though peri-Alpine lakes, including for the first time a broad different phytoplankton configurations among lakes data set of six deep peri-Alpine lakes, belonging to the were partly due to their geographical (altitude) same geographical region.
    [Show full text]