Mutational Analysis of the DOK2 Haploinsufficient Tumor Suppressor

Total Page:16

File Type:pdf, Size:1020Kb

Mutational Analysis of the DOK2 Haploinsufficient Tumor Suppressor Letters to the Editor 500 in MF. Second, the salutary effect of ruxolitinib therapy in alleviating 2 Tefferi A, Cervantes F, Mesa R, Passamonti F, Verstovsek S, Vannucchi AM et al. constitutional symptoms and reducing spleen size in MF is Revised response criteria for myelofibrosis: International Working Group- antagonized by treatment-related cytopenias and that of mome- Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and Eur- lotinib by treatment-emergent peripheral neuropathy. Furthermore, opean LeukemiaNet (ELN) consensus report. Blood 2013; 122: 1395–1398. fi 3 Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, our long-term experience suggests that the bene t from both fi 366 drugs might not be long-lived. These observations highlight the placebo-controlled trial of ruxolitinib for myelo brosis. NEnglJMed2012; : 799–807. need for new drugs with alternative mechanism of action. 4 Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. ACKNOWLEDGEMENTS N Engl J Med 2012; 366:787–798. 5 Pardanani A, Laborde RR, Lasho TL, Finke C, Begna K, Al-Kali A et al. Safety and Drugs and support for the conduct of the clinical trials were provided by Incyte efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 2013; 27: Corporation, Wilmington, DE, USA (ruxolitinib) and YM BioSciences, Inc., Mississauga, 1322–1327. Canada (momelotinib). 6 Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011; 29:789–796. RA Abdelrahman, KH Begna, A Al-Kali, WJ Hogan, MR Litzow 7 Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA and A Tefferi et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofi- Division of Hematology and Department of Medicine, Mayo Clinic, brosis. N Engl J Med 2010; 363: 1117–1127. Rochester, MN, USA 8 Tefferi A, Litzow MR, Pardanani A. Long-term outcome of treatment with rux- E-mail: [email protected] olitinib in myelofibrosis. N Engl J Med 2011; 365: 1455–1457. 9 Pardanani A, Gotlib J, Gupta V, Roberts AW, Wadleigh M, Sirhan S et al. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for REFERENCES the treatment of myelofibrosis. Blood 2013; 122: 108. 1 Tefferi A, Barosi G, Mesa RA, Cervantes F, Deeg HJ, Reilly JT et al. International 10 Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S et al. DIPSS Working Group (IWG) consensus criteria for treatment response in myelofibrosis plus: a refined Dynamic International Prognostic Scoring System for primary with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment myelofibrosis that incorporates prognostic information from karyotype, platelet (IWG-MRT). Blood 2006; 108: 1497–1503. count, and transfusion status. J Clin Oncol 2011; 29:392–397. Mutational analysis of the DOK2 haploinsufficient tumor suppressor gene in chronic myelomonocytic leukemia (CMML) Leukemia (2015) 29, 500–502; doi:10.1038/leu.2014.288 Under informed consent, we analyzed the gene mutations in the bone marrow (BM) samples from 30 MD-CMML and 36 MP- CMML patients (Supplementary Table S1). Expectedly, mutations Downstream of tyrosine kinase (DOK) proteins are substrates of previously reported in CMML patients (such as NRAS, CBL, protein tyrosine kinases, acting as negative regulators of cell PTPN11, FLT3, JAK2 and NF1 genes)7 were present in our MP- signaling pathways.1 Loss of DOK2 gene expression has been CMML cohort. We analyzed somatic mutations in DOK1 and detected in human lung adenocarcinomas, and mice with Dok2 DOK2 genes. Genomic DNA from the BM cells was amplified with haploinsufficiency develop lung cancers.2 Mice lacking both six primer pairs covering the entire coding region (exons 1–5) of fi Dok1 and Dok2 genes (the two first described Dok gene family each DOK gene (Supplementary Material). We identi ed point members) present a myeloproliferative chronic myelogenous mutations in the two DOK genes. For DOK1, two variants were 3,4 found; L60Q in exon 1 coding for a functional protein–lipid leukemia-like syndrome. Moreover, genetic ablation of Dok 10 genes in a BCR/ABL transgenic background accelerates the interaction domain, a pleckstrin homology domain, and D263E in exon 5. For DOK2, four variants (2 × R201H, L238P and R215H) apparition of the blastic crisis and leukemia induced by the BCR- were found in 3/66 CMML and 1/2 unclassified myeloprolifera- ABL fusion oncoprotein,3,4 DOK1 and DOK2 adaptor proteins tive myelodysplastic neoplasm. These DOK2 point mutations are attenuate RAS/ERK- and PI3K/AKT-dependent signaling path- 3–5 locatedinexon4andthe5'endofexon5thatcodeforthe ways involved in myeloid cell proliferation. On the basis of 11 2–4 2,6 phosphotyrosine binding (PTB) domain of the DOK protein. these studies, animal models and data from solid tumors, Sorted CD3+ lymphocytes of the peripheral blood from DOK DOK genes are now considered as tumor suppressors. However, variant patients were only available for the MP-CMML patient the mutation status of DOK1 and DOK2 genes in patients with with DOK2 L238P mutation. The DOK2 L238P mutation was chronic myeloproliferative neoplasm (MPN) remains to be present in the myeloid cells but not in the lymphoid cells defined. 7 (Figure 1a). Mutations in cell signaling genes have been reported in MPNs. A three-dimensional structure model revealed that the L238P Chronic myelomonocytic leukemia (CMML) belongs to the MPN substitution would alter the structure of the DOK2 PTB domain, 8 class. Upon white blood cell count CMML has been subdivided in resulting in a loss of stable binding to phosphotyrosyl peptides myelodysplatic (MD-CMML) and myeloproliferative (MP-CMML) (Figure 1b). subtypes. These two subtypes are associated with different gene DOK2 binds via its PTB domain to tyrosine phosphorylated expression profiles.9 DOK1 protein.12 Two arginine residues in positions 200 and 201 Accepted article preview online 25 September 2014; advance online publication, 21 October 2014 Leukemia (2015) 491–514 © 2015 Macmillan Publishers Limited Letters to the Editor 501 DOK2 c.713 T>C: Leu238Pro Dok-2 (412aa) PH Y PTB Y Y Y YY Y * L238P Whole Bone Marrow L238P CD3+ T cells pDok2EGFP Dok2 Dok2 Dok2 Dok-1 IP Mock WT RR L238P Mock wt RR L238P --++-++-pV treatment 80kDa GFP WB 80kDa GFP WB 58kDa 58kDa Dok-1 WB β 46kDa -Tubulin WB 46kDa IgH 46kDa p-ERK1/2 WB WCL 80kDa GFP WB MEFs WT MEFs Dok DKO ) 50 pMIG 4 25 *** pMIG Dok2 WT pMIG Dok2 RR 40 20 *** pMIG Dok2 L238P *** 30 15 *** 20 10 10 5 *** *** * 0 Absolute cell number (x10 0 123456 123456 Days Days Figure 1. (a) Identification of an acquired and heterozygous DOK2 L238P point mutation in an MP-CMML patient. Sequencing profile of DOK2 MP-CMML patient (HD-1236). DNA samples were extracted from whole BM or sorted CD3+ T cells of the peripheral blood. The Human Genome Variation Society nomenclature of the identified DOK2 gene variation is c.713T4C (p.Leu238Pro) (Supplementary Table S2). (b) DOK2 L238P mutation alters the three-dimensional (3D) structure of the DOK2 PTB domain. Top: linear structure of the DOK2 molecule, containing an N-terminal pleckstrin homology (PH) domain, a central PTB domain and several phosphorylable tyrosine (Y) residues in the C-terminal part. The L238P point mutation (red asterisk) is located in the PTB functional domain. Bottom: 3D structural model of the DOK2 PTB domain (green ribbon) interacting with DOK1 EMLENLpY phospho-peptide (red) complex. The L238P single mutation (gray) would affect the 3D conformation of the protein, bending the helix α2 (represented by light green arrows that illustrate the consequences of such mutation) thus preventing the clamp between the C-terminal part of the protein and the phospho-peptide. (c) DOK2 L238P mutation induces a loss of DOK2 heterodimerization with the DOK1 protein. KG-1 myeloid cells were transfected by nucleofection with plasmids coding for GFP-tagged wild- type (WT) DOK2, a control DOK2 mutant with a loss-of-function in the PTB domain (RR200-201AA, RR), the L238P point mutant (L238P) or GFP alone (mock). KG-1 cells were treated with sodium pervanadate (pV) at 50 μM for 5 min at 37 °C. Cells were lysed and the lysates were immunoprecipitated using an anti-Dok1 antibody followed by sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and anti-GFP western blot (WB) allowing the identification of DOK2 GFP fusion proteins with the endogenous DOK1 molecule. DOK1 immunoprecipitates were controlled by DOK1 WB. In parallel, whole-cell lysates (WCLs) were separated by SDS-PAGE and blotted for GFP expression. Molecular weight markers were reported in the left side of the blots. This panel shows representative blots of two independent experiments. (d) The L238P mutant DOK2 molecule is unable to reduce pervanadate-induced ERK-1/2 phosphorylation in KG-1 myeloid cells. KG-1 myeloid cells were transfected by nucleofection with plasmids encoding for GFP-tagged WT DOK2, a control DOK2 mutant with a loss-of- function in the PTB domain (RR200-201AA, RR), the L238P point mutant (L238P) or GFP alone (mock). KG-1 cells were treated or not with pV at 1 μM for 5 min at 37 °C. WCLs were separated by SDS-PAGE and subsequently immunoblotted for phospho-ERK-1/2 (p-ERK1/2 WB). The blots were reprobed for β-tubulin expression as a loading control and GFP expression to detect the presence of GFP-DOK2 fusion proteins. Molecular weight markers were reported in the left side of the blots. This panel shows representative blots of two independent experiments.
Recommended publications
  • The Proximal Signaling Network of the BCR-ABL1 Oncogene Shows a Modular Organization
    Oncogene (2010) 29, 5895–5910 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc ORIGINAL ARTICLE The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization B Titz, T Low, E Komisopoulou, SS Chen, L Rubbi and TG Graeber Crump Institute for Molecular Imaging, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA BCR-ABL1 is a fusion tyrosine kinase, which causes signaling effects of BCR-ABL1 toward leukemic multiple types of leukemia. We used an integrated transformation. proteomic approach that includes label-free quantitative Oncogene (2010) 29, 5895–5910; doi:10.1038/onc.2010.331; protein complex and phosphorylation profiling by mass published online 9 August 2010 spectrometry to systematically characterize the proximal signaling network of this oncogenic kinase. The proximal Keywords: adaptor protein; BCR-ABL1; phospho- BCR-ABL1 signaling network shows a modular and complex; quantitative mass spectrometry; signaling layered organization with an inner core of three leukemia network; systems biology transformation-relevant adaptor protein complexes (Grb2/Gab2/Shc1 complex, CrkI complex and Dok1/ Dok2 complex). We introduced an ‘interaction direction- ality’ analysis, which annotates static protein networks Introduction with information on the directionality of phosphorylation- dependent interactions. In this analysis, the observed BCR-ABL1 is a constitutively active oncogenic fusion network structure was consistent with a step-wise kinase that arises through a chromosomal translocation phosphorylation-dependent assembly of the Grb2/Gab2/ and causes multiple types of leukemia. It is found in Shc1 and the Dok1/Dok2 complexes on the BCR-ABL1 many cases (B25%) of adult acute lymphoblastic core.
    [Show full text]
  • RET/PTC Activation in Papillary Thyroid Carcinoma
    European Journal of Endocrinology (2006) 155 645–653 ISSN 0804-4643 INVITED REVIEW RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture Massimo Santoro1, Rosa Marina Melillo1 and Alfredo Fusco1,2 1Istituto di Endocrinologia ed Oncologia Sperimentale del CNR ‘G. Salvatore’, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, University ‘Federico II’, Via S. Pansini, 5, 80131 Naples, Italy and 2NOGEC (Naples Oncogenomic Center)–CEINGE, Biotecnologie Avanzate & SEMM, European School of Molecular Medicine, Naples, Italy (Correspondence should be addressed to M Santoro; Email: [email protected]) Abstract Papillary thyroid carcinoma (PTC) is frequently associated with RET gene rearrangements that generate the so-called RET/PTC oncogenes. In this review, we examine the data about the mechanisms of thyroid cell transformation, activation of downstream signal transduction pathways and modulation of gene expression induced by RET/PTC. These findings have advanced our understanding of the processes underlying PTC formation and provide the basis for novel therapeutic approaches to this disease. European Journal of Endocrinology 155 645–653 RET/PTC rearrangements in papillary growth factor, have been described in a fraction of PTC thyroid carcinoma patients (7). As illustrated in figure 1, many different genes have been found to be rearranged with RET in The rearranged during tansfection (RET) proto-onco- individual PTC patients. RET/PTC1 and 3 account for gene, located on chromosome 10q11.2, was isolated in more than 90% of all rearrangements and are hence, by 1985 and shown to be activated by a DNA rearrange- far, the most frequent variants (8–11). They result from ment (rearranged during transfection) (1).As the fusion of RET to the coiled-coil domain containing illustrated in Fig.
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding by Human
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates.
    [Show full text]
  • RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
    G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1].
    [Show full text]
  • DOK1 Purified Maxpab Rabbit Polyclonal Antibody (D01P)
    DOK1 purified MaxPab rabbit polyclonal antibody (D01P) Catalog # : H00001796-D01P 規格 : [ 100 ug ] List All Specification Application Image Product Rabbit polyclonal antibody raised against a full-length human DOK1 Western Blot (Transfected lysate) Description: protein. Immunogen: DOK1 (NP_001372.1, 1 a.a. ~ 481 a.a) full-length human protein. Sequence: MDGAVMEGPLFLQSQRFGTKRWRKTWAVLYPASPHGVARLEFFDHKG SSSGGGRGSSRRLDCKVIRLAECVSVAPVTVETPPEPGATAFRLDTAQR SHLLAADAPSSAAWVQTLCRNAFPKGSWTLAPTDNPPKLSALEMLENSL enlarge YSPTWEGSQFWVTVQRTEAAERCGLHGSYVLRVEAERLTLLTVGAQS QILEPLLSWPYTLLRRYGRDKVMFSFEAGRRCPSGPGTFTFQTAQGNDI FQAVETAIHRQKAQGKAGQGHDVLRADSHEGEVAEGKLPSPPGPQELL DSPPALYAEPLDSLRIAPCPSQDSLYSDPLDSTSAQAGEGVQRKKPLYW DLYEHAQQQLLKAKLTDPKEDPIYDEPEGLAPVPPQGLYDLPREPKDAW WCQARVKEEGYELPYNPATDDYAVPPPRSTKPLLAPKPQGPAFPEPGT ATGSGIKSHNSALYSQVQKSGASGSWDCGLSRVGTDKTGVKSEGST Host: Rabbit Reactivity: Human Quality Control Antibody reactive against mammalian transfected lysate. Testing: Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Transfected lysate) Western Blot analysis of DOK1 expression in transfected 293T cell line (H00001796-T01) by DOK1 MaxPab polyclonal antibody. Lane 1: DOK1 transfected lysate(52.40 KDa). Lane 2: Non-transfected lysate. Page 1 of 2 2016/5/20 Protocol Download Gene Information Entrez GeneID: 1796 GeneBank NM_001381 Accession#: Protein NP_001372.1 Accession#: Gene Name: DOK1 Gene Alias: MGC117395,MGC138860,P62DOK
    [Show full text]
  • Detection of a Rare BCR–ABL Tyrosine Kinase Fusion Protein in H929 Multiple Myeloma Cells Using Immunoprecipitation (IP)-Tandem Mass Spectrometry (MS/MS)
    Detection of a rare BCR–ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS) Susanne B. Breitkopfa,b, Min Yuana, German A. Pihanc, and John M. Asaraa,b,1 aDivision of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; and cDepartment of Hematopathology, Beth Israel Deaconess Medical Center, Boston, MA 02115 Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved August 23, 2012 (received for review July 26, 2012) Hypothesis directed proteomics offers higher throughput over Here, we focused on a hypothesis-directed approach to identify global analyses. We show that immunoprecipitation (IP)–tandem the active signaling pathways that drive cancers. To this end, we mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) immunoprecipitated proteins that have clinical significance in cell cancer cells led to the discovery of a rare and unexpected BCR– proliferation such as the central nodes in the AKT and ERK sig- ABL fusion, informing a therapeutic intervention using imatinib naling pathways. The p85 regulatory subunit of phosphoinositide- (Gleevec). BCR–ABL is the driving mutation in chronic myeloid leu- 3-kinase (PI3K) binds pYXXM motif-containing proteins to the kemia (CML) and is uncommon to other cancers. Three different IP– SRC homology 2 (SH2) domains of p85, thus recruiting the p110 MS experiments central to cell signaling pathways were sufficient to catalytic subunit to the plasma membrane for activation (5, 17). Activated p110 phosphorylates its lipid substrate phosphatidyli- discover a BCR–ABL fusion in H929 cells: phosphotyrosine (pY) pep- nositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-tri- tide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) phosphate (PIP3) and binds to the pleckstrin homology (PH) IP, and the GRB2 adaptor IP.
    [Show full text]
  • Signaling Opposing Roles in CD200 Receptor Downstream of Tyrosine
    Downstream of Tyrosine Kinase 1 and 2 Play Opposing Roles in CD200 Receptor Signaling Robin Mihrshahi and Marion H. Brown This information is current as J Immunol published online 15 November 2010 of October 1, 2021. http://www.jimmunol.org/content/early/2010/11/14/jimmun ol.1002858 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists http://www.jimmunol.org/ • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: by guest on October 1, 2021 http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 15, 2010, doi:10.4049/jimmunol.1002858 The Journal of Immunology Downstream of Tyrosine Kinase 1 and 2 Play Opposing Roles in CD200 Receptor Signaling Robin Mihrshahi and Marion H. Brown The CD200 receptor (CD200R) negatively regulates myeloid cells by interacting with its widely expressed ligand CD200. CD200R signals through a unique inhibitory pathway involving a direct interaction with the adaptor protein downstream of tyrosine kinase 2 (Dok2) and the subsequent recruitment and activation of Ras GTPase-activating protein (RasGAP). Ligand engagement of CD200R also results in tyrosine phosphorylation of Dok1, but this protein is not essential for inhibitory CD200R signaling in human myeloid cells.
    [Show full text]
  • The Tec Kinase−Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages
    The Tec Kinase−Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages This information is current as Giacomo Tampella, Hannah M. Kerns, Deqiang Niu, Swati of September 29, 2021. Singh, Socheath Khim, Katherine A. Bosch, Meghan E. Garrett, Albanus Moguche, Erica Evans, Beth Browning, Tahmina A. Jahan, Mariana Nacht, Alejandro Wolf-Yadlin, Alessandro Plebani, Jessica A. Hamerman, David J. Rawlings and Richard G. James Downloaded from J Immunol published online 29 May 2015 http://www.jimmunol.org/content/early/2015/05/29/jimmun ol.1403238 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2015/05/29/jimmunol.140323 Material 8.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 29, 2015, doi:10.4049/jimmunol.1403238 The Journal of Immunology The Tec Kinase–Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages Giacomo Tampella,*,1 Hannah M.
    [Show full text]
  • Structure, Function, and Regulation of the SRMS Tyrosine Kinase
    International Journal of Molecular Sciences Review Structure, Function, and Regulation of the SRMS Tyrosine Kinase Chakia J. McClendon 1 and W. Todd Miller 1,2,* 1 Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA; [email protected] 2 Department of Veterans Affairs Medical Center, Northport, NY 11768, USA * Correspondence: [email protected] Received: 21 May 2020; Accepted: 12 June 2020; Published: 14 June 2020 Abstract: Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a tyrosine kinase that was discovered in 1994. It is a member of a family of nonreceptor tyrosine kinases that also includes Brk (PTK6) and Frk. Compared with other tyrosine kinases, there is relatively little information about the structure, function, and regulation of SRMS. In this review, we summarize the current state of knowledge regarding SRMS, including recent results aimed at identifying downstream signaling partners. We also present a structural model for the enzyme and discuss the potential involvement of SRMS in cancer cell signaling. Keywords: tyrosine kinase; signal transduction; phosphorylation; SH3 domains; SH2 domains; Src family kinases 1. Introduction Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a 53 kDa nonreceptor tyrosine kinase that was first discovered in mouse neural precursor cells [1]. Studies of the expression pattern of SRMS mRNA showed that the highest levels were present in lung, testes, and liver tissues. Full-length cDNA encoding SRMS was isolated from a murine lung cDNA library, with the predicted SRMS protein containing all of the conserved amino acid residues expected for a nonreceptor tyrosine kinase.
    [Show full text]
  • Rabbit Anti-Phospho-DOK1-SL5290R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-phospho-DOK1 SL5290R-FITC Product Name: Anti-phospho-DOK1 (Tyr398)/FITC Chinese Name: FITC标记的磷酸化D酪氨酸激酶衰减蛋白1抗体 DOK1 (phospho Y398); DOK1 (phospho Tyr398); p-DOK1 (phospho Y398); docking protein 1 (downstream of tyrosine kinase 1); Docking protein 1 (p62(dok)) (Downstream of tyrosine kinase 1) (pp62).; docking protein 1 62kD (downstream of Alias: tyrosine kinase 1); Docking protein 1 62kD; Docking protein 1 62kD; Docking protein 1; DOK 1; DOK1; DOK-1; DOK1_HUMAN; Downstream of tyrosine kinase 1; p62(dok); P62DOK; pp62; pp62. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Pig,Cow,Horse, IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 53kDa Form: Lyophilized or Liquid Concentration: 1mg/mlwww.sunlongbiotech.com KLH conjugated Synthesised phosphopeptide derived from human DOK1 around the immunogen: phosphorylation site of Tyr398 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Product Detail: Docking protein 1 is constitutively tyrosine phosphorylated in hematopoietic progenitors isolated from chronic myelogenous leukemia (CML) patients in the chronic phase.
    [Show full text]
  • Anti-CD150 / SLAM Antibody [SLAM.4] (FITC) (ARG42368)
    Product datasheet [email protected] ARG42368 Package: 100 tests anti-CD150 / SLAM antibody [SLAM.4] (FITC) Store at: 4°C Summary Product Description FITC-conjugated Mouse Monoclonal antibody [SLAM.4] recognizes CD150 / SLAM Tested Reactivity Hu Tested Application FACS Specificity The mouse monoclonal antibody SLAM.4 recognizes an extracellular epitope of CD150, a cell surface molecule expressed on lymphocytes and involved in their activation. Host Mouse Clonality Monoclonal Clone SLAM.4 Isotype IgG1 Target Name CD150 / SLAM Antigen Species Human Immunogen Human CD150-transfected 300.19 cells. Conjugation FITC Alternate Names Signaling lymphocytic activation molecule; IPO-3; CD150; CDw150; CD antigen CD150; SLAM Application Instructions Application table Application Dilution FACS 4 µl / 100 µl of whole blood or 10^6 cells Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 37 kDa Properties Form Liquid Purification Purified Buffer PBS and 15 mM Sodium azide. Preservative 15 mM Sodium azide Storage instruction Aliquot and store in the dark at 2-8°C. Keep protected from prolonged exposure to light. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol SLAMF1 Gene Full Name signaling lymphocytic activation molecule family member 1 Function Self-ligand receptor of the signaling lymphocytic activation molecule (SLAM) family. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]